Matches in DBpedia 2014 for { <http://dbpedia.org/resource/ZJ_theorem> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- ZJ_theorem abstract "In mathematics, George Glauberman's ZJ theorem states that if a finite group G is p-constrained and p-stable and has a normal p-subgroup for some odd prime p, then Op′(G)Z(J(S)) is a normal subgroup of G, for any Sylow p-subgroup S.".
- ZJ_theorem wikiPageExternalLink p1101.
- ZJ_theorem wikiPageID "9758699".
- ZJ_theorem wikiPageRevisionID "493045315".
- ZJ_theorem hasPhotoCollection ZJ_theorem.
- ZJ_theorem subject Category:Finite_groups.
- ZJ_theorem subject Category:Theorems_in_group_theory.
- ZJ_theorem type Abstraction100002137.
- ZJ_theorem type Communication100033020.
- ZJ_theorem type FiniteGroups.
- ZJ_theorem type Group100031264.
- ZJ_theorem type Message106598915.
- ZJ_theorem type Proposition106750804.
- ZJ_theorem type Statement106722453.
- ZJ_theorem type Theorem106752293.
- ZJ_theorem type TheoremsInGroupTheory.
- ZJ_theorem comment "In mathematics, George Glauberman's ZJ theorem states that if a finite group G is p-constrained and p-stable and has a normal p-subgroup for some odd prime p, then Op′(G)Z(J(S)) is a normal subgroup of G, for any Sylow p-subgroup S.".
- ZJ_theorem label "ZJ theorem".
- ZJ_theorem sameAs m.02pr9g0.
- ZJ_theorem sameAs Q8063120.
- ZJ_theorem sameAs Q8063120.
- ZJ_theorem sameAs ZJ_theorem.
- ZJ_theorem wasDerivedFrom ZJ_theorem?oldid=493045315.
- ZJ_theorem isPrimaryTopicOf ZJ_theorem.