Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Zeta_function_universality> ?p ?o. }
Showing items 1 to 16 of
16
with 100 items per page.
- Zeta_function_universality abstract "In mathematics, the universality of zeta-functions is the remarkable ability of the Riemann zeta-function and other, similar, functions, such as the Dirichlet L-functions, to approximate arbitrary non-vanishing holomorphic functions arbitrarily well.The universality of the Riemann zeta function was first proven by Sergei Mikhailovitch Voronin in 1975 and is sometimes known as Voronin's Universality Theorem.".
- Zeta_function_universality thumbnail Voronin_universality_theorem.png?width=300.
- Zeta_function_universality wikiPageExternalLink 0309433v1.
- Zeta_function_universality wikiPageExternalLink voronin.htm.
- Zeta_function_universality wikiPageID "2198016".
- Zeta_function_universality wikiPageRevisionID "553092703".
- Zeta_function_universality hasPhotoCollection Zeta_function_universality.
- Zeta_function_universality subject Category:Zeta_and_L-functions.
- Zeta_function_universality comment "In mathematics, the universality of zeta-functions is the remarkable ability of the Riemann zeta-function and other, similar, functions, such as the Dirichlet L-functions, to approximate arbitrary non-vanishing holomorphic functions arbitrarily well.The universality of the Riemann zeta function was first proven by Sergei Mikhailovitch Voronin in 1975 and is sometimes known as Voronin's Universality Theorem.".
- Zeta_function_universality label "Zeta function universality".
- Zeta_function_universality sameAs m.06v84s.
- Zeta_function_universality sameAs Q8069736.
- Zeta_function_universality sameAs Q8069736.
- Zeta_function_universality wasDerivedFrom Zeta_function_universality?oldid=553092703.
- Zeta_function_universality depiction Voronin_universality_theorem.png.
- Zeta_function_universality isPrimaryTopicOf Zeta_function_universality.