Matches in Harvard for { <http://id.lib.harvard.edu/aleph/007965003/catalog> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- catalog contributor b11044416.
- catalog contributor b11044417.
- catalog created "c1999.".
- catalog date "1999".
- catalog date "c1999.".
- catalog dateCopyrighted "c1999.".
- catalog description "Ch. I. Signals and Systems -- Lesson 1. Signals and Systems -- Lesson 2. Filters and Transfer Functions -- Ch. II. Periodic Signals -- Lesson 3. Trigonometric Signals -- Lesson 4. Periodic Signals and Fourier Series -- Lesson 5. Pointwise Representation -- Lesson 6. Expanding a Function in an Orthogonal Basis -- Lesson 7. Frequencies, Spectra, and Scales -- Ch. III. The Discrete Fourier Transform and Numerical Computations -- Lesson 8. The Discrete Fourier Transform -- Lesson 9. A Famous, Lightning-Fast Algorithm -- Lesson 10. Using the FFT for Numerical Computations -- Ch. IV. The Lebesgue Integral -- Lesson 11. From Riemann to Lebesgue -- Lesson 12. Measuring Sets -- Lesson 13. Integrating Measurable Functions -- Lesson 14. Integral Calculus -- Ch. V. Spaces -- Lesson 15. Function Spaces -- Lesson 16. Hilbert Spaces -- Ch. VI. Convolution and the Fourier Transform of Functions -- Lesson 17. The Fourier Transform of Integrable Functions -- Lesson 18. The Inverse Fourier Transform -- Lesson 19. The Space [actual symbol not reproducible] (R) -- Lesson 20. The Convolution of Functions -- Lesson 21. Convolution, Derivation, and Regularization -- Lesson 22. The Fourier Transform on L[superscript 2](R) -- Lesson 23. Convolution and the Fourier Transform -- Ch. VII. Analog Filters -- Lesson 24. Analog Filters Governed by a Differential Equation -- Lesson 25. Examples of Analog Filters -- Ch. VIII. Distributions -- Lesson 26. Where Functions Prove to Be Inadequate -- Lesson 27. What Is a Distribution? -- Lesson 28. Elementary Operations on Distributions -- Lesson 29. Convergence of a Sequence of Distributions -- Lesson 30. Primitives of a Distribution -- Ch. IX. Convolution and the Fourier Transform of Distributions -- Lesson 31. The Fourier Transform of Distributions -- Lesson 32. Convolution of Distributions -- Lesson 33. Convolution and the Fourier Transform of Distributions -- Ch. X. Filters and Distributions.".
- catalog description "Includes bibliographical references (p. [433]-436) and index.".
- catalog description "Lesson 34. Filters, Differential Equations, and Distributions -- Lesson 35. Realizable Filters and Differential Equations -- Ch. XI. Sampling and Discrete Filters -- Lesson 36. Periodic Distributions -- Lesson 37. Sampling Signals and Poisson's Formula -- Lesson 38. The Sampling Theorem and Shannon's Formula -- Lesson 39. Discrete Filters and Convolution -- Lesson 40. The z-Transform and Discrete Filters -- Ch. XII. Current Trends: Time-Frequency Analysis -- Lesson 41. The Windowed Fourier Transform -- Lesson 42. Wavelet Analysis.".
- catalog extent "xviii, 442 p. :".
- catalog identifier "0387984852 (hardcover : acid-free paper)".
- catalog isPartOf "Texts in applied mathematics ; 30".
- catalog issued "1999".
- catalog issued "c1999.".
- catalog language "eng fre".
- catalog language "eng".
- catalog publisher "New York : Springer,".
- catalog subject "515/.2433 21".
- catalog subject "Fourier analysis.".
- catalog subject "QA403.5 .G37 1999".
- catalog tableOfContents "Ch. I. Signals and Systems -- Lesson 1. Signals and Systems -- Lesson 2. Filters and Transfer Functions -- Ch. II. Periodic Signals -- Lesson 3. Trigonometric Signals -- Lesson 4. Periodic Signals and Fourier Series -- Lesson 5. Pointwise Representation -- Lesson 6. Expanding a Function in an Orthogonal Basis -- Lesson 7. Frequencies, Spectra, and Scales -- Ch. III. The Discrete Fourier Transform and Numerical Computations -- Lesson 8. The Discrete Fourier Transform -- Lesson 9. A Famous, Lightning-Fast Algorithm -- Lesson 10. Using the FFT for Numerical Computations -- Ch. IV. The Lebesgue Integral -- Lesson 11. From Riemann to Lebesgue -- Lesson 12. Measuring Sets -- Lesson 13. Integrating Measurable Functions -- Lesson 14. Integral Calculus -- Ch. V. Spaces -- Lesson 15. Function Spaces -- Lesson 16. Hilbert Spaces -- Ch. VI. Convolution and the Fourier Transform of Functions -- Lesson 17. The Fourier Transform of Integrable Functions -- Lesson 18. The Inverse Fourier Transform -- Lesson 19. The Space [actual symbol not reproducible] (R) -- Lesson 20. The Convolution of Functions -- Lesson 21. Convolution, Derivation, and Regularization -- Lesson 22. The Fourier Transform on L[superscript 2](R) -- Lesson 23. Convolution and the Fourier Transform -- Ch. VII. Analog Filters -- Lesson 24. Analog Filters Governed by a Differential Equation -- Lesson 25. Examples of Analog Filters -- Ch. VIII. Distributions -- Lesson 26. Where Functions Prove to Be Inadequate -- Lesson 27. What Is a Distribution? -- Lesson 28. Elementary Operations on Distributions -- Lesson 29. Convergence of a Sequence of Distributions -- Lesson 30. Primitives of a Distribution -- Ch. IX. Convolution and the Fourier Transform of Distributions -- Lesson 31. The Fourier Transform of Distributions -- Lesson 32. Convolution of Distributions -- Lesson 33. Convolution and the Fourier Transform of Distributions -- Ch. X. Filters and Distributions.".
- catalog tableOfContents "Lesson 34. Filters, Differential Equations, and Distributions -- Lesson 35. Realizable Filters and Differential Equations -- Ch. XI. Sampling and Discrete Filters -- Lesson 36. Periodic Distributions -- Lesson 37. Sampling Signals and Poisson's Formula -- Lesson 38. The Sampling Theorem and Shannon's Formula -- Lesson 39. Discrete Filters and Convolution -- Lesson 40. The z-Transform and Discrete Filters -- Ch. XII. Current Trends: Time-Frequency Analysis -- Lesson 41. The Windowed Fourier Transform -- Lesson 42. Wavelet Analysis.".
- catalog title "Fourier analysis and applications : filtering, numerical computation, wavelets / C. Gasquet, P. Witomski ; translated by R. Ryan.".
- catalog type "text".