Matches in Harvard for { <http://id.lib.harvard.edu/aleph/008064381/catalog> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- catalog contributor b11199697.
- catalog created "c1999.".
- catalog date "1999".
- catalog date "c1999.".
- catalog dateCopyrighted "c1999.".
- catalog description "Conventional forecasting and Takens' embedding theorem -- Implications of observational noise -- Implications of dynamic noise -- A Universal Approximator Network for Predicting Conditional Probability Densities -- A single-hidden-layer network -- An additional hidden layer -- Regaining the conditional probability density -- Moments of the conditional probability density -- Interpretation of the network parameters -- Gaussian mixture model -- Derivative-of-sigmoid versus Gaussian mixture model -- Comparison with other approaches -- Predicting local error bars -- Indirect method -- Complete kernel expansion: Conditional Density Estimation Network (CDEN) and Mixture Density Network (MDN) -- Distorted Probability Mixture Network (DPMN) -- Mixture of Experts (ME) and Hierarchical Mixture of Experts (HME) -- Soft histogram -- Appendix: The moment generating function for the DSM network -- A Maximum Likelihood Training Scheme -- The cost function -- A gradient-descent training scheme -- Output weights -- Kernel widths -- Remaining weights -- Interpretation of the parameter adaptation rules -- Deficiencies of gradient descent and their remedy -- Benchmark Problems -- Logistic map with intrinsic noise -- Stochastic combination of two stochastic dynamical systems -- Brownian motion in a double-well potential -- Demonstration of the Model Performance on the Benchmark Problems -- Logistic map with intrinsic noise -- Method -- Results -- Stochastic coupling between two stochastic dynamical systems -- Method -- Results -- Auto-pruning.".
- catalog description "Includes bibliographical references (p. [267]-272) and index.".
- catalog extent "xxiii, 275 p. :".
- catalog hasFormat "Neural networks for conditional probability estimation.".
- catalog identifier "1852330953 (alk. paper)".
- catalog isFormatOf "Neural networks for conditional probability estimation.".
- catalog isPartOf "Perspectives in neural computing".
- catalog issued "1999".
- catalog issued "c1999.".
- catalog language "eng".
- catalog publisher "London ; New York : Springer,".
- catalog relation "Neural networks for conditional probability estimation.".
- catalog subject "006.3/2 21".
- catalog subject "Distribution (Probability theory) Data processing.".
- catalog subject "Neural networks (Computer science)".
- catalog subject "QA76.87 .H87 1999".
- catalog tableOfContents "Conventional forecasting and Takens' embedding theorem -- Implications of observational noise -- Implications of dynamic noise -- A Universal Approximator Network for Predicting Conditional Probability Densities -- A single-hidden-layer network -- An additional hidden layer -- Regaining the conditional probability density -- Moments of the conditional probability density -- Interpretation of the network parameters -- Gaussian mixture model -- Derivative-of-sigmoid versus Gaussian mixture model -- Comparison with other approaches -- Predicting local error bars -- Indirect method -- Complete kernel expansion: Conditional Density Estimation Network (CDEN) and Mixture Density Network (MDN) -- Distorted Probability Mixture Network (DPMN) -- Mixture of Experts (ME) and Hierarchical Mixture of Experts (HME) -- Soft histogram -- Appendix: The moment generating function for the DSM network -- A Maximum Likelihood Training Scheme -- The cost function -- A gradient-descent training scheme -- Output weights -- Kernel widths -- Remaining weights -- Interpretation of the parameter adaptation rules -- Deficiencies of gradient descent and their remedy -- Benchmark Problems -- Logistic map with intrinsic noise -- Stochastic combination of two stochastic dynamical systems -- Brownian motion in a double-well potential -- Demonstration of the Model Performance on the Benchmark Problems -- Logistic map with intrinsic noise -- Method -- Results -- Stochastic coupling between two stochastic dynamical systems -- Method -- Results -- Auto-pruning.".
- catalog title "Neural networks for conditional probability estimation : forecasting beyond point predictions / Dirk Husmeier.".
- catalog type "text".