Matches in Harvard for { <http://id.lib.harvard.edu/aleph/008675647/catalog> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- catalog contributor b12153895.
- catalog created "2001.".
- catalog date "2001".
- catalog date "2001.".
- catalog dateCopyrighted "2001.".
- catalog description "4.3. Methods Based on the Neumann Series -- 4.4. Projections and Projection Methods -- 4.5. The Galerkin Method -- 4.6. The Rayleigh-Ritz Method -- 4.7. Collocation Methods -- 4.8. Descent Methods -- 4.9. Conjugate Direction Methods -- 4.10. Methods Based on Homotopy and Continuation -- Ch. 5. Distributions -- 5.1. Definitions and Examples -- 5.2. Derivatives of Distributions -- 5.3. Convergence of Distributions -- 5.4. Multiplication of Distributions by Functions -- 5.5. Convolutions -- 5.6. Differential Operators -- 5.7. Distributions with Compact Support -- Ch. 6. The Fourier Transform -- 6.1. Definitions and Basic Properties -- 6.2. The Schwartz Space -- 6.3. The Inversion Theorems -- 6.4. The Plancherel Theorem -- 6.5. Applications of the Fourier Transform -- 6.6. Applications to Partial Differential Equations -- 6.7. Tempered Distributions -- 6.8. Sobolev Spaces -- Ch. 7. Additional Topics -- 7.1. Fixed-Point Theorems -- 7.2. Selection Theorems -- 7.3. Separation Theorems -- ".
- catalog description "7.4. The Arzela-Ascoli Theorems -- 7.5. Compact Operators and the Fredholm Theory -- 7.6. Topological Spaces -- 7.7. Linear Topological Spaces -- 7.8. Analytic Pitfalls -- Ch. 8. Measure and Integration -- 8.1. Extended Reals, Outer Measures, Measurable Spaces -- 8.2. Measures and Measure Spaces -- 8.3. Lebesgue Measure -- 8.4. Measurable Functions -- 8.5. The Integral for Nonnegative Functions -- 8.6. The Integral, Continued -- 8.7. The L[superscript p]-Spaces -- 8.8. The Radon-Nikodym Theorem -- 8.9. Signed Measures -- 8.10. Product Measures and Fubini's Theorem.".
- catalog description "Ch. 1. Normed Linear Spaces -- 1.1. Definitions and Examples -- 1.2. Convexity, Convergence, Compactness, Completeness -- 1.3. Continuity, Open Sets, Closed Sets -- 1.4. More About Compactness -- 1.5. Linear Transformations -- 1.6. Zorn's Lemma, Hamel Bases, and the Hahn-Banach Theorem -- 1.7. The Baire Theorem and Uniform Boundedness -- 1.8. The Interior Mapping and Closed Mapping Theorems -- 1.9. Weak Convergence -- 1.10. Reflexive Spaces -- Ch. 2. Hilbert Spaces -- 2.1. Geometry -- 2.2. Orthogonality and Bases -- 2.3. Linear Functionals and Operators -- 2.4. Spectral Theory -- 2.5. Sturm-Liouville Theory -- Ch. 3. Calculus in Banach Spaces -- 3.1. The Frechet Derivative -- 3.2. The Chain Rule and Mean Value Theorems -- 3.3. Newton's Method -- 3.4. Implicit Function Theorems -- 3.5. Extremum Problems and Lagrange Multipliers -- 3.6. The Calculus of Variations -- Ch. 4. Basic Approximate Methods of Analysis -- 4.1. Discretization -- 4.2. The Method of Iteration -- ".
- catalog description "Includes bibliographical references and index.".
- catalog extent "viii, 444 p. :".
- catalog identifier "0387952799 (alk. paper)".
- catalog isPartOf "Graduate texts in mathematics ; 208".
- catalog issued "2001".
- catalog issued "2001.".
- catalog language "eng".
- catalog publisher "New York : Springer,".
- catalog subject "515 21".
- catalog subject "Mathematical analysis.".
- catalog subject "QA300 .C4437 2001".
- catalog tableOfContents "4.3. Methods Based on the Neumann Series -- 4.4. Projections and Projection Methods -- 4.5. The Galerkin Method -- 4.6. The Rayleigh-Ritz Method -- 4.7. Collocation Methods -- 4.8. Descent Methods -- 4.9. Conjugate Direction Methods -- 4.10. Methods Based on Homotopy and Continuation -- Ch. 5. Distributions -- 5.1. Definitions and Examples -- 5.2. Derivatives of Distributions -- 5.3. Convergence of Distributions -- 5.4. Multiplication of Distributions by Functions -- 5.5. Convolutions -- 5.6. Differential Operators -- 5.7. Distributions with Compact Support -- Ch. 6. The Fourier Transform -- 6.1. Definitions and Basic Properties -- 6.2. The Schwartz Space -- 6.3. The Inversion Theorems -- 6.4. The Plancherel Theorem -- 6.5. Applications of the Fourier Transform -- 6.6. Applications to Partial Differential Equations -- 6.7. Tempered Distributions -- 6.8. Sobolev Spaces -- Ch. 7. Additional Topics -- 7.1. Fixed-Point Theorems -- 7.2. Selection Theorems -- 7.3. Separation Theorems -- ".
- catalog tableOfContents "7.4. The Arzela-Ascoli Theorems -- 7.5. Compact Operators and the Fredholm Theory -- 7.6. Topological Spaces -- 7.7. Linear Topological Spaces -- 7.8. Analytic Pitfalls -- Ch. 8. Measure and Integration -- 8.1. Extended Reals, Outer Measures, Measurable Spaces -- 8.2. Measures and Measure Spaces -- 8.3. Lebesgue Measure -- 8.4. Measurable Functions -- 8.5. The Integral for Nonnegative Functions -- 8.6. The Integral, Continued -- 8.7. The L[superscript p]-Spaces -- 8.8. The Radon-Nikodym Theorem -- 8.9. Signed Measures -- 8.10. Product Measures and Fubini's Theorem.".
- catalog tableOfContents "Ch. 1. Normed Linear Spaces -- 1.1. Definitions and Examples -- 1.2. Convexity, Convergence, Compactness, Completeness -- 1.3. Continuity, Open Sets, Closed Sets -- 1.4. More About Compactness -- 1.5. Linear Transformations -- 1.6. Zorn's Lemma, Hamel Bases, and the Hahn-Banach Theorem -- 1.7. The Baire Theorem and Uniform Boundedness -- 1.8. The Interior Mapping and Closed Mapping Theorems -- 1.9. Weak Convergence -- 1.10. Reflexive Spaces -- Ch. 2. Hilbert Spaces -- 2.1. Geometry -- 2.2. Orthogonality and Bases -- 2.3. Linear Functionals and Operators -- 2.4. Spectral Theory -- 2.5. Sturm-Liouville Theory -- Ch. 3. Calculus in Banach Spaces -- 3.1. The Frechet Derivative -- 3.2. The Chain Rule and Mean Value Theorems -- 3.3. Newton's Method -- 3.4. Implicit Function Theorems -- 3.5. Extremum Problems and Lagrange Multipliers -- 3.6. The Calculus of Variations -- Ch. 4. Basic Approximate Methods of Analysis -- 4.1. Discretization -- 4.2. The Method of Iteration -- ".
- catalog title "Analysis for applied mathematics / Ward Cheney.".
- catalog type "text".