Matches in Harvard for { <http://id.lib.harvard.edu/aleph/008843818/catalog> ?p ?o. }
Showing items 1 to 22 of
22
with 100 items per page.
- catalog abstract "This introduction to the theory of lie groups and their representations starts from basic undergraduate maths and proceeds through the fundamentals of Lie theory to topics in representation theory, such as the Peter-Weyl theorem.".
- catalog contributor b12407567.
- catalog created "c2002.".
- catalog date "2002".
- catalog date "c2002.".
- catalog dateCopyrighted "c2002.".
- catalog description "Includes bibliographical references (p. 258-260) and index.".
- catalog description "Machine generated contents note: 1 The exponential map 1 -- 1.1 Vector fields and one-parameter groups of -- linear transformation 1 -- 1.2 Ad, ad, and dexp 12 -- 1.3 The Campbell-Baker-Hausdorff series 22 -- 2 Lie theory 30 -- 2.1 Linear groups: definitions and examples 30 -- 2.2 The Lie algebra of a linear group 44 -- 2.3 Coordinates on a linear group 53 -- 2.4 Connectedness 61 -- 2.5 The Lie correspondence 66 -- 2.6 Homomorphisms and coverings of linear groups 78 -- 2.7 Closed subgroups 87 -- 3 The classical groups 91 -- 3.1 The classical groups: definitions, connectedness 91 -- 3.2 Cartan subgroups 107 -- 3.3 Roots, weights, reflections 115 -- 3.4 Fundamental groups of the classical groups 121 -- 4 Manifolds, homogeneous spaces, Lie groups 132 -- 4.1 Manifolds 132 -- 4.2 Homogeneous spaces 143 -- 4.3 Lie groups 152 -- 5 Integration 165 -- 5.1 Integration on manifolds 165 -- 5.2 Integration on linear groups and -- their homogeneous spaces 171 -- 5.3 Weyl's integration formula for U(n) 179 -- 6 Representations 189 -- 6.1 Representations: definitions 189 -- 6.2 Schur's lemma, Peter-Weyl theorem 197 -- 6.3 Characters 205 -- 6.4 Weyl's character formula for U(n) 212 -- 6.5 Representations of Lie algebras 223 -- 6.6 The Borel-Weil theorem for GL(n, C) 232 -- 6.7 Representations of the classical groups 237 -- Appendix Analytic Functions and Inverse -- Function Theorem 250.".
- catalog description "This introduction to the theory of lie groups and their representations starts from basic undergraduate maths and proceeds through the fundamentals of Lie theory to topics in representation theory, such as the Peter-Weyl theorem.".
- catalog extent "x, 265 p. :".
- catalog identifier "0198596839 (acid-free paper)".
- catalog isPartOf "Oxford graduate texts in mathematics ; 5".
- catalog issued "2002".
- catalog issued "c2002.".
- catalog language "eng".
- catalog publisher "Oxford, UK ; New York : Oxford University Press,".
- catalog subject "512/.55 21".
- catalog subject "Lie groups.".
- catalog subject "QA387 .R68 2002".
- catalog tableOfContents "Machine generated contents note: 1 The exponential map 1 -- 1.1 Vector fields and one-parameter groups of -- linear transformation 1 -- 1.2 Ad, ad, and dexp 12 -- 1.3 The Campbell-Baker-Hausdorff series 22 -- 2 Lie theory 30 -- 2.1 Linear groups: definitions and examples 30 -- 2.2 The Lie algebra of a linear group 44 -- 2.3 Coordinates on a linear group 53 -- 2.4 Connectedness 61 -- 2.5 The Lie correspondence 66 -- 2.6 Homomorphisms and coverings of linear groups 78 -- 2.7 Closed subgroups 87 -- 3 The classical groups 91 -- 3.1 The classical groups: definitions, connectedness 91 -- 3.2 Cartan subgroups 107 -- 3.3 Roots, weights, reflections 115 -- 3.4 Fundamental groups of the classical groups 121 -- 4 Manifolds, homogeneous spaces, Lie groups 132 -- 4.1 Manifolds 132 -- 4.2 Homogeneous spaces 143 -- 4.3 Lie groups 152 -- 5 Integration 165 -- 5.1 Integration on manifolds 165 -- 5.2 Integration on linear groups and -- their homogeneous spaces 171 -- 5.3 Weyl's integration formula for U(n) 179 -- 6 Representations 189 -- 6.1 Representations: definitions 189 -- 6.2 Schur's lemma, Peter-Weyl theorem 197 -- 6.3 Characters 205 -- 6.4 Weyl's character formula for U(n) 212 -- 6.5 Representations of Lie algebras 223 -- 6.6 The Borel-Weil theorem for GL(n, C) 232 -- 6.7 Representations of the classical groups 237 -- Appendix Analytic Functions and Inverse -- Function Theorem 250.".
- catalog title "Lie groups : an introduction through linear groups / Wulf Rossmann.".
- catalog type "text".