Matches in Harvard for { <http://id.lib.harvard.edu/aleph/008906844/catalog> ?p ?o. }
Showing items 1 to 41 of
41
with 100 items per page.
- catalog abstract ""Easy to read and understand, Fundamentals of Physical Acoustics fills a long-standing need for an acoustics text that challenges but does not overpower graduate students in engineering and physics. Mathematical results and physical explanations go hand in hand, and a unique feature of the book is the balance it strikes between time-domain and frequency-domain presentations." "Fundamentals of Physical Acoustics is intended for a two-semester, first-year graduate course, but is also suitable for advanced undergraduates."--Jacket.".
- catalog contributor b12505749.
- catalog created "c2000.".
- catalog date "2000".
- catalog date "c2000.".
- catalog dateCopyrighted "c2000.".
- catalog description ""Easy to read and understand, Fundamentals of Physical Acoustics fills a long-standing need for an acoustics text that challenges but does not overpower graduate students in engineering and physics. Mathematical results and physical explanations go hand in hand, and a unique feature of the book is the balance it strikes between time-domain and frequency-domain presentations." "Fundamentals of Physical Acoustics is intended for a two-semester, first-year graduate course, but is also suitable for advanced undergraduates."--Jacket.".
- catalog description "112 -- B. Special Cases 112 -- 1. Rigid Wall 112 -- 2. Pressure Release Surface 113 -- 3. Matched Impedance Interface 114 -- C. Change in Cross-Sectional Area 114 -- 1. Rectangular Pulse in an Air-Filled Tube of Finite Length 117 -- 2. Shock Tube 119 -- 3. Bursting Balloon 121 -- Chapter 4 Normal Incidence Continued: Steady-State Analysis 130 -- B. Single Impedance Termination 134 -- 1. Pressure Release Termination (Z[subscript n] = 0) 134 -- 2. Rigid Termination (Z[subscript n] = [infinity]) 138 -- 3. General Resistive Termination 139 -- 4. General Impedance Termination 140 -- 5. Change in Cross-Sectional Area 144 -- C. Lumped-Element Approximation 144 -- 1. Electrical Analogs 144 -- 2. Short Closed Cavity 145 -- 3. End Correction for an Open Tube 151 -- 4. Short Open Cavity 153 -- 5. Helmholtz Resonator 153 -- 6. Orifice 156 -- 1.".
- catalog description "218 -- A. Vibrating String (and Other One-Dimensional Problems) 218 -- 1. String with Fixed Ends 219 -- 2. Other Boundary Conditions 226 -- 3. Struck String 227 -- B. Vibrating Membrane 229 -- C. Sound in a Rectangular Enclosure 233 -- D. Rectangular Waveguide 236 -- 1. Membrane Waveguide 236 -- 2. Forward Traveling Waves, Phase Velocity, and Cutoff 238 -- 3. Physical Interpretation 240 -- 4. Source Conditions 242 -- Chapter 7 Horns 250 -- A. Webster Horn Equation 251 -- 1. Continuity Equation 251 -- 2. Momentum Equation 252 -- 3. Webster Horn Equation 254 -- B. Example: Exponential Horn 254 -- 1. Exponential Horn Equation and Solution 254 -- 2. Amplitude Decay and Phase Velocity 255 -- C. Impedance, Power Transmitted, and Transmission Factor 257 -- 1. Impedance and Power 258 -- 2. Conical Horn 259 -- 3. Transmission Factor 260 -- D.".
- catalog description "3. Effect of the Thermal Boundary Layer 525 -- Appendix D Solution of Legendre's Equation by Power Series 526 -- Appendix E Directivity and Impedance Functions for a Circular Piston 528.".
- catalog description "A. What Is a Wave? 1 -- B. Plane Waves: Some Basic Solutions 3 -- 1. General Solution of the Wave Equation 4 -- 2. Free Waves 10 -- 3. Forced Waves 14 -- 4. Relation between Derivatives for a Progressive Wave 16 -- C. Derivation of Wave Equations. Impedance 18 -- 1. Electrical Transmission Line 18 -- 2. Waves on a String 22 -- 3. Sound Waves 27 -- D. Spherical and Cylindrical Sound Waves of One Dimension 39 -- 1. Three-Dimensional Wave Equation 40 -- 2. Solutions for One-Dimensional Waves 41 -- 3. Sound from a Pulsating Sphere 42 -- E. Signals, Impedance, Intensity and Power, and Levels 44 -- 1. Time and Frequency Domains 44 -- 2. Impedance 46 -- 3. Intensity and Sound Power 48 -- 4. Sound Pressure Level and Other Levels 51 -- Chapter 2 Detailed Development of the Acoustical Wave Equation 65 -- A. Conservation Equations and Constitutive Relation 65 -- 1.".
- catalog description "Equation of Continuity 65 -- 2. Momentum Equation 69 -- 3. Energy Equation 77 -- 4. Equation of State (Constitutive Relation) 80 -- 5. Entropy Equation 82 -- B. Nonlinear Wave Equation 84 -- 2. Plane Progressive Waves of Finite Amplitude 86 -- 3. Second-Harmonic Distortion 89 -- 4. Sum- and Difference-Frequency (Intermodulation) Distortion 91 -- C. Small-Signal Wave Equation 91 -- 1. Lossless Medium at Rest 91 -- 2. Lossless Medium Moving with Constant Velocity 93 -- 3. Lossless Medium in a Gravitational Field 95 -- 4. Viscous Fluid 96 -- 5. Viscous, Thermally Conducting Fluid 97 -- 6. Relaxing Fluid 98 -- Chapter 3 Reflection and Transmission of Normally Incident Plane Waves of Arbitrary Waveform 108 -- A. Reflection and Transmission Coefficients for an Interface between Two Ideal Fluids 108 -- 1. Pressure Signals 109 -- 2. Sound Power 111 -- 3. Transmission Loss".
- catalog description "Example: Bipolar Pulsating Sphere 349 -- C. Standing Spherical Waves: Enclosure Problems 352 -- 1. Pressure Release Sphere 353 -- 2. Hollow Sphere 355 -- D. Radiation Problems 356 -- 1. Introduction: Multipole Expansion 356 -- 2. Monopoles 358 -- 3. Dipoles 367 -- Chapter 11 Cylindrical Waves 386 -- A. Solution of the Wave Equation in Cylindrical Coordinates 386 -- 1. Solution by Separation of Variables 387 -- 2. Properties of Bessel Functions 389 -- B. Circular Membrane 398 -- 2. Example: Membrane with Uniform Initial Displacement 400 -- 3. Variations 401 -- C. Three-Dimensional Cylindrical Coordinates 404 -- 1. Enclosure Problems 404 -- 2. Radiation Problems 407 -- Chapter 12 Waveguides 420 -- B. Rectangular Waveguide 421 -- 1. General Solution 421 -- 2. Source Conditions and Mode Excitation 423 -- 4. Pressure Release Walls 427 -- 5.".
- catalog description "Helmholtz-Kirchhoff Integral Theorem 473 -- 1. Derivation 473 -- 2. Time Domain Version 475 -- C. Circular Aperture 476 -- 1. Plane Wave Normally Incident on a Circular Aperture 477 -- 2. Spherical Wave Incident on a Circular Aperture 480 -- D. Reflection by a Rigid Disk 481 -- E. Babinet's Principle 486 -- Chapter 15 Arrays 495 -- A. Directivity: Nomenclature and Definitions 495 -- B. Array of Two Point Sources 499 -- C. Array of N Point Sources 502 -- D. Continuous Line Array 504 -- E. Array of Directional Sources: Product Theorem 506 -- Appendix A Elastic Constants, Velocity of Sound, and Characteristic Impedance 510 -- Appendix B Absorption Formulas for the Atmosphere and Ocean 513 -- 1. Atmosphere 513 -- 2. Ocean 516 -- Appendix C Absorption due to Tube Wall Boundary-Layer Effects 519 -- 1. Viscous Boundary Layer 520 -- 2. Quasi-Plane-Wave Equation 524 --".
- catalog description "Includes bibliographical references and index.".
- catalog description "More General Approach: WKB Method 260 -- 1. Application to the Horn Equation: Direct Approach 262 -- 2. Modified Approach 263 -- 3. Impedance and Transmission Factor 264 -- E. Horn Duals 266 -- Chapter 8 Propagation in Stratified Media 273 -- A. Static Properties of the Atmosphere and the Ocean 274 -- 1. Atmosphere 274 -- 2. Ocean 276 -- B. Vertical Propagation of Plane Waves 278 -- 1. One-Dimensional Wave Equation 278 -- 2. Vertical Propagation through an Isothermal Atmosphere 280 -- 3. General Solution by Means of the WKB Method 281 -- C. Ray Theory 284 -- 1. Ray Paths 284 -- 2. Rays in a Fluid Having a Linear Sound Speed Profile 288 -- 3. Time of Travel along a Ray Path 292 -- Chapter 9 Propagation in Dissipative Fluids: Absorption and Dispersion 298 -- B. Viscosity and Heat Conduction 303 -- 1. Viscous Fluids 304 -- 2. Thermally Conducting Fluids 306 -- 3.".
- catalog description "Phase and Group Velocity 427 -- C. Cylindrical Waves in Waveguides 428 -- 1. Cylindrical Tube 429 -- 2. Parallel Planes 430 -- Chapter 13 Radiation from a Baffled Piston 440 -- A. General Solution: The Rayleigh Integral 441 -- 1. Time-Harmonic Piston Vibration 442 -- 2. Example: Ring Piston 442 -- 3. Circular Piston (Disk) 445 -- B. Farfield Radiation 446 -- 1. Rayleigh Distance 447 -- 2. Size of ka 449 -- 3. First Null, Minor-Lobe Suppression, Beamwidth, and Phase 450 -- 4. Intensity, Power, and Source Level 451 -- C. Pressure Field on the Axis 452 -- 1. Transition to the Farfield 454 -- 2. Nearfield Structure 454 -- 3. Intensity 455 -- D. Pressure on the Face of the Piston 457 -- E. Transient Radiation from a Piston 460 -- 1. Signal on the Axis 460 -- 2. Farfield 461 -- F. Nonuniform Piston 463 -- Chapter 14 Diffraction 472 -- B.".
- catalog description "Side Branches, Filters 156 -- 2. Probe Tube Microphone 160 -- E. Three-Medium Problems 163 -- 1. Three Different Media, Constant Cross Section 163 -- 2. Cross Sections Different for the Three Media 168 -- 3. Sound Power Reflection and Transmission Coefficients 170 -- F. Wall Transmission Loss: Lumped-Element Approach 171 -- Chapter 5 Transmission Phenomena: Oblique Incidence 186 -- A. Simple Derivation of Snell's Law and Specular Reflection 186 -- B. Plane Interface Separating Two Fluids 189 -- 1. Alternative Derivation of Snell's Law; R, T, and [tau] Coefficients 190 -- 2. Special Cases 193 -- C. Transmission through Panels at Oblique Incidence 198 -- 1. Transmission Dominated by Panel Mass: The Mass Law 200 -- 2. Panel Stiffness: The Coincidence Effect 203 -- D. Composite Walls 208 -- Chapter 6 Normal Modes in Cartesian Coordinates: Strings, Membranes, Rooms, and Rectangular Waveguides".
- catalog description "Thermoviscous Fluids 313 -- C. Relaxation 315 -- 2. Equation of State 317 -- 3. Wave Equation 318 -- 4. Dispersion Relation 318 -- D. Boundary-Layer Absorption (and Dispersion) 322 -- 1. Physical Phenomenon: Viscous Boundary Layer 322 -- 2. Thermal Boundary Layer 323 -- 3. Effect of the Two Boundary Layers 324 -- E. Summary of Sound Absorption in Fluids 325 -- 1. Viscous Fluids 325 -- 2. Thermally Conducting Fluids 326 -- 3. Thermoviscous Fluids 326 -- 4. Relaxing Fluids 326 -- 5. Boundary-Layer Absorption: Thermoviscous Fluids 327 -- Chapter 10 Spherical Waves 335 -- B. Solution by Separation of Variables 337 -- 1. Legendre Polynomials 338 -- 2. Spherical Bessel Functions 341 -- 3. Spherical Hankel Functions 344 -- 4. Summary of Solutions for Axially Symmetric Wave Motion 345 -- 5. Most General Spherical Waves; Spherical Harmonics 346 -- 6.".
- catalog extent "xxi, 541 p. :".
- catalog identifier "0471319791 (acid-free paper)".
- catalog issued "2000".
- catalog issued "c2000.".
- catalog language "eng".
- catalog publisher "New York : Wiley,".
- catalog subject "534 21".
- catalog subject "QC225.15 .B55 2000".
- catalog subject "Sound.".
- catalog tableOfContents "112 -- B. Special Cases 112 -- 1. Rigid Wall 112 -- 2. Pressure Release Surface 113 -- 3. Matched Impedance Interface 114 -- C. Change in Cross-Sectional Area 114 -- 1. Rectangular Pulse in an Air-Filled Tube of Finite Length 117 -- 2. Shock Tube 119 -- 3. Bursting Balloon 121 -- Chapter 4 Normal Incidence Continued: Steady-State Analysis 130 -- B. Single Impedance Termination 134 -- 1. Pressure Release Termination (Z[subscript n] = 0) 134 -- 2. Rigid Termination (Z[subscript n] = [infinity]) 138 -- 3. General Resistive Termination 139 -- 4. General Impedance Termination 140 -- 5. Change in Cross-Sectional Area 144 -- C. Lumped-Element Approximation 144 -- 1. Electrical Analogs 144 -- 2. Short Closed Cavity 145 -- 3. End Correction for an Open Tube 151 -- 4. Short Open Cavity 153 -- 5. Helmholtz Resonator 153 -- 6. Orifice 156 -- 1.".
- catalog tableOfContents "218 -- A. Vibrating String (and Other One-Dimensional Problems) 218 -- 1. String with Fixed Ends 219 -- 2. Other Boundary Conditions 226 -- 3. Struck String 227 -- B. Vibrating Membrane 229 -- C. Sound in a Rectangular Enclosure 233 -- D. Rectangular Waveguide 236 -- 1. Membrane Waveguide 236 -- 2. Forward Traveling Waves, Phase Velocity, and Cutoff 238 -- 3. Physical Interpretation 240 -- 4. Source Conditions 242 -- Chapter 7 Horns 250 -- A. Webster Horn Equation 251 -- 1. Continuity Equation 251 -- 2. Momentum Equation 252 -- 3. Webster Horn Equation 254 -- B. Example: Exponential Horn 254 -- 1. Exponential Horn Equation and Solution 254 -- 2. Amplitude Decay and Phase Velocity 255 -- C. Impedance, Power Transmitted, and Transmission Factor 257 -- 1. Impedance and Power 258 -- 2. Conical Horn 259 -- 3. Transmission Factor 260 -- D.".
- catalog tableOfContents "3. Effect of the Thermal Boundary Layer 525 -- Appendix D Solution of Legendre's Equation by Power Series 526 -- Appendix E Directivity and Impedance Functions for a Circular Piston 528.".
- catalog tableOfContents "A. What Is a Wave? 1 -- B. Plane Waves: Some Basic Solutions 3 -- 1. General Solution of the Wave Equation 4 -- 2. Free Waves 10 -- 3. Forced Waves 14 -- 4. Relation between Derivatives for a Progressive Wave 16 -- C. Derivation of Wave Equations. Impedance 18 -- 1. Electrical Transmission Line 18 -- 2. Waves on a String 22 -- 3. Sound Waves 27 -- D. Spherical and Cylindrical Sound Waves of One Dimension 39 -- 1. Three-Dimensional Wave Equation 40 -- 2. Solutions for One-Dimensional Waves 41 -- 3. Sound from a Pulsating Sphere 42 -- E. Signals, Impedance, Intensity and Power, and Levels 44 -- 1. Time and Frequency Domains 44 -- 2. Impedance 46 -- 3. Intensity and Sound Power 48 -- 4. Sound Pressure Level and Other Levels 51 -- Chapter 2 Detailed Development of the Acoustical Wave Equation 65 -- A. Conservation Equations and Constitutive Relation 65 -- 1.".
- catalog tableOfContents "Equation of Continuity 65 -- 2. Momentum Equation 69 -- 3. Energy Equation 77 -- 4. Equation of State (Constitutive Relation) 80 -- 5. Entropy Equation 82 -- B. Nonlinear Wave Equation 84 -- 2. Plane Progressive Waves of Finite Amplitude 86 -- 3. Second-Harmonic Distortion 89 -- 4. Sum- and Difference-Frequency (Intermodulation) Distortion 91 -- C. Small-Signal Wave Equation 91 -- 1. Lossless Medium at Rest 91 -- 2. Lossless Medium Moving with Constant Velocity 93 -- 3. Lossless Medium in a Gravitational Field 95 -- 4. Viscous Fluid 96 -- 5. Viscous, Thermally Conducting Fluid 97 -- 6. Relaxing Fluid 98 -- Chapter 3 Reflection and Transmission of Normally Incident Plane Waves of Arbitrary Waveform 108 -- A. Reflection and Transmission Coefficients for an Interface between Two Ideal Fluids 108 -- 1. Pressure Signals 109 -- 2. Sound Power 111 -- 3. Transmission Loss".
- catalog tableOfContents "Example: Bipolar Pulsating Sphere 349 -- C. Standing Spherical Waves: Enclosure Problems 352 -- 1. Pressure Release Sphere 353 -- 2. Hollow Sphere 355 -- D. Radiation Problems 356 -- 1. Introduction: Multipole Expansion 356 -- 2. Monopoles 358 -- 3. Dipoles 367 -- Chapter 11 Cylindrical Waves 386 -- A. Solution of the Wave Equation in Cylindrical Coordinates 386 -- 1. Solution by Separation of Variables 387 -- 2. Properties of Bessel Functions 389 -- B. Circular Membrane 398 -- 2. Example: Membrane with Uniform Initial Displacement 400 -- 3. Variations 401 -- C. Three-Dimensional Cylindrical Coordinates 404 -- 1. Enclosure Problems 404 -- 2. Radiation Problems 407 -- Chapter 12 Waveguides 420 -- B. Rectangular Waveguide 421 -- 1. General Solution 421 -- 2. Source Conditions and Mode Excitation 423 -- 4. Pressure Release Walls 427 -- 5.".
- catalog tableOfContents "Helmholtz-Kirchhoff Integral Theorem 473 -- 1. Derivation 473 -- 2. Time Domain Version 475 -- C. Circular Aperture 476 -- 1. Plane Wave Normally Incident on a Circular Aperture 477 -- 2. Spherical Wave Incident on a Circular Aperture 480 -- D. Reflection by a Rigid Disk 481 -- E. Babinet's Principle 486 -- Chapter 15 Arrays 495 -- A. Directivity: Nomenclature and Definitions 495 -- B. Array of Two Point Sources 499 -- C. Array of N Point Sources 502 -- D. Continuous Line Array 504 -- E. Array of Directional Sources: Product Theorem 506 -- Appendix A Elastic Constants, Velocity of Sound, and Characteristic Impedance 510 -- Appendix B Absorption Formulas for the Atmosphere and Ocean 513 -- 1. Atmosphere 513 -- 2. Ocean 516 -- Appendix C Absorption due to Tube Wall Boundary-Layer Effects 519 -- 1. Viscous Boundary Layer 520 -- 2. Quasi-Plane-Wave Equation 524 --".
- catalog tableOfContents "More General Approach: WKB Method 260 -- 1. Application to the Horn Equation: Direct Approach 262 -- 2. Modified Approach 263 -- 3. Impedance and Transmission Factor 264 -- E. Horn Duals 266 -- Chapter 8 Propagation in Stratified Media 273 -- A. Static Properties of the Atmosphere and the Ocean 274 -- 1. Atmosphere 274 -- 2. Ocean 276 -- B. Vertical Propagation of Plane Waves 278 -- 1. One-Dimensional Wave Equation 278 -- 2. Vertical Propagation through an Isothermal Atmosphere 280 -- 3. General Solution by Means of the WKB Method 281 -- C. Ray Theory 284 -- 1. Ray Paths 284 -- 2. Rays in a Fluid Having a Linear Sound Speed Profile 288 -- 3. Time of Travel along a Ray Path 292 -- Chapter 9 Propagation in Dissipative Fluids: Absorption and Dispersion 298 -- B. Viscosity and Heat Conduction 303 -- 1. Viscous Fluids 304 -- 2. Thermally Conducting Fluids 306 -- 3.".
- catalog tableOfContents "Phase and Group Velocity 427 -- C. Cylindrical Waves in Waveguides 428 -- 1. Cylindrical Tube 429 -- 2. Parallel Planes 430 -- Chapter 13 Radiation from a Baffled Piston 440 -- A. General Solution: The Rayleigh Integral 441 -- 1. Time-Harmonic Piston Vibration 442 -- 2. Example: Ring Piston 442 -- 3. Circular Piston (Disk) 445 -- B. Farfield Radiation 446 -- 1. Rayleigh Distance 447 -- 2. Size of ka 449 -- 3. First Null, Minor-Lobe Suppression, Beamwidth, and Phase 450 -- 4. Intensity, Power, and Source Level 451 -- C. Pressure Field on the Axis 452 -- 1. Transition to the Farfield 454 -- 2. Nearfield Structure 454 -- 3. Intensity 455 -- D. Pressure on the Face of the Piston 457 -- E. Transient Radiation from a Piston 460 -- 1. Signal on the Axis 460 -- 2. Farfield 461 -- F. Nonuniform Piston 463 -- Chapter 14 Diffraction 472 -- B.".
- catalog tableOfContents "Side Branches, Filters 156 -- 2. Probe Tube Microphone 160 -- E. Three-Medium Problems 163 -- 1. Three Different Media, Constant Cross Section 163 -- 2. Cross Sections Different for the Three Media 168 -- 3. Sound Power Reflection and Transmission Coefficients 170 -- F. Wall Transmission Loss: Lumped-Element Approach 171 -- Chapter 5 Transmission Phenomena: Oblique Incidence 186 -- A. Simple Derivation of Snell's Law and Specular Reflection 186 -- B. Plane Interface Separating Two Fluids 189 -- 1. Alternative Derivation of Snell's Law; R, T, and [tau] Coefficients 190 -- 2. Special Cases 193 -- C. Transmission through Panels at Oblique Incidence 198 -- 1. Transmission Dominated by Panel Mass: The Mass Law 200 -- 2. Panel Stiffness: The Coincidence Effect 203 -- D. Composite Walls 208 -- Chapter 6 Normal Modes in Cartesian Coordinates: Strings, Membranes, Rooms, and Rectangular Waveguides".
- catalog tableOfContents "Thermoviscous Fluids 313 -- C. Relaxation 315 -- 2. Equation of State 317 -- 3. Wave Equation 318 -- 4. Dispersion Relation 318 -- D. Boundary-Layer Absorption (and Dispersion) 322 -- 1. Physical Phenomenon: Viscous Boundary Layer 322 -- 2. Thermal Boundary Layer 323 -- 3. Effect of the Two Boundary Layers 324 -- E. Summary of Sound Absorption in Fluids 325 -- 1. Viscous Fluids 325 -- 2. Thermally Conducting Fluids 326 -- 3. Thermoviscous Fluids 326 -- 4. Relaxing Fluids 326 -- 5. Boundary-Layer Absorption: Thermoviscous Fluids 327 -- Chapter 10 Spherical Waves 335 -- B. Solution by Separation of Variables 337 -- 1. Legendre Polynomials 338 -- 2. Spherical Bessel Functions 341 -- 3. Spherical Hankel Functions 344 -- 4. Summary of Solutions for Axially Symmetric Wave Motion 345 -- 5. Most General Spherical Waves; Spherical Harmonics 346 -- 6.".
- catalog title "Fundamentals of physical acoustics / David T. Blackstock.".
- catalog type "text".