Matches in Harvard for { <http://id.lib.harvard.edu/aleph/008945588/catalog> ?p ?o. }
Showing items 1 to 25 of
25
with 100 items per page.
- catalog abstract "This book is intended for students who wish to get an introduction to the theory of partial differential equations. The author focuses on elliptic equations and systematically develops the relevant existence schemes, always with a view towards nonlinear problems. These are maximum principle methods (particularly important for numerical analysis schemes), parabolic equations, variational methods, and continuity methods. This book also develops the main methods for obtaining estimates for solutions of elliptic equations: Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. Connections between elliptic, parabolic, and hyperbolic equations are explored, as well as the connection with Brownian motion and semigroups. This book can be utilized for a one-year course on partial differential equations. Jürgen Jost is Director of the Max Planck Institute for Mathematics in the Sciences and Professor of Mathematics at the University of Leipzig. He is the author of a number of Springer books, including Postmodern Analysis (1998), Compact Riemann Surfaces (1997) and Riemannian Geometry and Geometric Analysis (1995). The present book is an expanded translation of the original German version, Partielle Differentialgleichungen (1998).".
- catalog contributor b12563847.
- catalog created "c2002.".
- catalog date "2002".
- catalog date "c2002.".
- catalog dateCopyrighted "c2002.".
- catalog description "Includes bibliographical references (p. 317) and index.".
- catalog description "Introduction -- The Laplace equation as the prototype of an elliptic partial differential equation of 2nd order -- The maximum principle -- Existence techniques I: methods based on the maximum principle -- Existence techniques II: Parabolic methods. The Head equation -- The wave equation and its connections with the Laplace and heat equation -- The heat equation, semigroups, and Brownian motion -- The Dirichlet principle. Variational methods for the solution of PDE (Existence techniques III) -- Sobolev spaces and L2 regularity theory -- Strong solutions -- The regularity theory of Schauder and the continuity method (Existence techniques IV) -- The Moser iteration method and the reqularity theorem of de Giorgi and Nash -- Banach and Hilbert spaces. The Lp-spaces -- Bibliography.".
- catalog description "This book is intended for students who wish to get an introduction to the theory of partial differential equations. The author focuses on elliptic equations and systematically develops the relevant existence schemes, always with a view towards nonlinear problems. These are maximum principle methods (particularly important for numerical analysis schemes), parabolic equations, variational methods, and continuity methods. This book also develops the main methods for obtaining estimates for solutions of elliptic equations: Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. Connections between elliptic, parabolic, and hyperbolic equations are explored, as well as the connection with Brownian motion and semigroups. This book can be utilized for a one-year course on partial differential equations. Jürgen Jost is Director of the Max Planck Institute for Mathematics in the Sciences and Professor of Mathematics at the University of Leipzig. He is the author of a number of Springer books, including Postmodern Analysis (1998), Compact Riemann Surfaces (1997) and Riemannian Geometry and Geometric Analysis (1995). The present book is an expanded translation of the original German version, Partielle Differentialgleichungen (1998).".
- catalog extent "xi, 325 p. ;".
- catalog identifier "0387954287 (hardcover : alk. paper)".
- catalog isPartOf "Graduate texts in mathematics ; 214".
- catalog issued "2002".
- catalog issued "c2002.".
- catalog language "eng".
- catalog publisher "New York : Springer,".
- catalog subject "515/.353 21".
- catalog subject "Differential equations, Partial.".
- catalog subject "Mathematical physics.".
- catalog subject "Mathematics.".
- catalog subject "Physics.".
- catalog subject "QA377 .J66 2002".
- catalog tableOfContents "Introduction -- The Laplace equation as the prototype of an elliptic partial differential equation of 2nd order -- The maximum principle -- Existence techniques I: methods based on the maximum principle -- Existence techniques II: Parabolic methods. The Head equation -- The wave equation and its connections with the Laplace and heat equation -- The heat equation, semigroups, and Brownian motion -- The Dirichlet principle. Variational methods for the solution of PDE (Existence techniques III) -- Sobolev spaces and L2 regularity theory -- Strong solutions -- The regularity theory of Schauder and the continuity method (Existence techniques IV) -- The Moser iteration method and the reqularity theorem of de Giorgi and Nash -- Banach and Hilbert spaces. The Lp-spaces -- Bibliography.".
- catalog title "Partial differential equations / Jürgen Jost.".
- catalog type "text".