Matches in Harvard for { <http://id.lib.harvard.edu/aleph/009119753/catalog> ?p ?o. }
Showing items 1 to 28 of
28
with 100 items per page.
- catalog contributor b12845381.
- catalog contributor b12845382.
- catalog contributor b12845383.
- catalog created "c2003.".
- catalog date "2003".
- catalog date "c2003.".
- catalog dateCopyrighted "c2003.".
- catalog description "2 Basics of submanifold theory in space forms 7 -- 2.1 The fundamental equations for submanifolds of space forms 8 -- 2.2 Models of space forms 14 -- 2.3 Principal curvatures 17 -- 2.4 Totally geodesic submanifolds of space forms 20 -- 2.5 Reduction of the codimension 22 -- 2.6 Totally umbilical submanifolds of space forms 24 -- 2.7 Reducibility of submanifolds 27 -- 3 Submanifold geometry of orbits 33 -- 3.1 Isometric actions of Lie groups 34 -- 3.2 Polar actions and s-representations 41 -- 3.3 Equivariant maps 52 -- 3.4 Homogeneous submanifolds of Euclidean space 56 -- 3.5 Homogeneous submanifolds of hyperbolic spaces 58 -- 3.6 Second fundamental form of orbits 61 -- 3.7 Symmetric submanifolds 64 -- 3.8 Isoparametric hypersurfaces in space forms 81 -- 3.9 Algebraically constant second fundamental form 89 -- 4 The Normal Holonomy Theorem 95 -- 4.1 Normal holonomy".
- catalog description "96 -- 4.2 The Normal Holonomy Theorem 106 -- 4.3 Proof of the Normal Holonomy Theorem 108 -- 4.4 Some geometric applications of the Normal Holonomy Theorem 116 -- 5 Isoparametric submanifolds and their focal manifolds 139 -- 5.1 Submersions and isoparametric maps 140 -- 5.2 Isoparametric submanifolds and Coxeter groups 143 -- 5.3 Geometric properties of submanifolds with constant principal curvatures 157 -- 5.4 Homogeneous isoparametric submanifolds 161 -- 5.5 Isoparametric rank 168 -- 6 Rank rigidity of submanifolds and normal holonomy of orbits 177 -- 6.1 Submanifolds with curvature normals of constant length and rank of homogeneous submanifolds 178 -- 6.2 Normal holonomy of orbits 191 -- 7 Homogeneous structures on submanifolds 201 -- 7.1 Homogeneous structures and homogeneity 202 -- 7.2 Examples of homogeneous structures 208 -- 7.3 Isoparametric submanifolds of higher rank 214 -- 8".
- catalog description "Includes bibliographical references (p. 313-326) and index.".
- catalog description "Submanifolds of Riemannian manifolds 223 -- 8.1 Submanifolds and the fundamental equations 224 -- 8.2 Focal points and Jacobi vector fields 225 -- 8.3 Totally geodesic submanifolds 230 -- 8.4 Totally umbilical submanifolds and extrinsic spheres 236 -- 8.5 Symmetric submanifolds 240 -- 9 Submanifolds of Symmetric Spaces 243 -- 9.1 Totally geodesic submanifolds 243 -- 9.2 Totally umbilical submanifolds and extrinsic spheres 252 -- 9.3 Symmetric submanifolds 256 -- 9.4 Submanifolds with parallel second fundamental form 266 -- 9.5 Homogeneous hypersurfaces 269 -- Appendix Basic material 281 -- A.1 Riemannian manifolds 281 -- A.2 Lie groups and Lie algebras 291 -- A.3 Homogeneous spaces 299 -- A.4 Symmetric spaces and flag manifolds 302.".
- catalog extent "336 p. ;".
- catalog identifier "1584883715 (alk. paper)".
- catalog isPartOf "Chapman & Hall/CRC research notes in mathematics series ; 434.".
- catalog isPartOf "Research notes in mathematics ; 434".
- catalog issued "2003".
- catalog issued "c2003.".
- catalog language "eng".
- catalog publisher "Boca Raton : Chapman & Hall/CRC,".
- catalog subject "516.3/62 21".
- catalog subject "Holonomy groups.".
- catalog subject "QA649 .B467 2003".
- catalog subject "Submanifolds.".
- catalog tableOfContents "2 Basics of submanifold theory in space forms 7 -- 2.1 The fundamental equations for submanifolds of space forms 8 -- 2.2 Models of space forms 14 -- 2.3 Principal curvatures 17 -- 2.4 Totally geodesic submanifolds of space forms 20 -- 2.5 Reduction of the codimension 22 -- 2.6 Totally umbilical submanifolds of space forms 24 -- 2.7 Reducibility of submanifolds 27 -- 3 Submanifold geometry of orbits 33 -- 3.1 Isometric actions of Lie groups 34 -- 3.2 Polar actions and s-representations 41 -- 3.3 Equivariant maps 52 -- 3.4 Homogeneous submanifolds of Euclidean space 56 -- 3.5 Homogeneous submanifolds of hyperbolic spaces 58 -- 3.6 Second fundamental form of orbits 61 -- 3.7 Symmetric submanifolds 64 -- 3.8 Isoparametric hypersurfaces in space forms 81 -- 3.9 Algebraically constant second fundamental form 89 -- 4 The Normal Holonomy Theorem 95 -- 4.1 Normal holonomy".
- catalog tableOfContents "96 -- 4.2 The Normal Holonomy Theorem 106 -- 4.3 Proof of the Normal Holonomy Theorem 108 -- 4.4 Some geometric applications of the Normal Holonomy Theorem 116 -- 5 Isoparametric submanifolds and their focal manifolds 139 -- 5.1 Submersions and isoparametric maps 140 -- 5.2 Isoparametric submanifolds and Coxeter groups 143 -- 5.3 Geometric properties of submanifolds with constant principal curvatures 157 -- 5.4 Homogeneous isoparametric submanifolds 161 -- 5.5 Isoparametric rank 168 -- 6 Rank rigidity of submanifolds and normal holonomy of orbits 177 -- 6.1 Submanifolds with curvature normals of constant length and rank of homogeneous submanifolds 178 -- 6.2 Normal holonomy of orbits 191 -- 7 Homogeneous structures on submanifolds 201 -- 7.1 Homogeneous structures and homogeneity 202 -- 7.2 Examples of homogeneous structures 208 -- 7.3 Isoparametric submanifolds of higher rank 214 -- 8".
- catalog tableOfContents "Submanifolds of Riemannian manifolds 223 -- 8.1 Submanifolds and the fundamental equations 224 -- 8.2 Focal points and Jacobi vector fields 225 -- 8.3 Totally geodesic submanifolds 230 -- 8.4 Totally umbilical submanifolds and extrinsic spheres 236 -- 8.5 Symmetric submanifolds 240 -- 9 Submanifolds of Symmetric Spaces 243 -- 9.1 Totally geodesic submanifolds 243 -- 9.2 Totally umbilical submanifolds and extrinsic spheres 252 -- 9.3 Symmetric submanifolds 256 -- 9.4 Submanifolds with parallel second fundamental form 266 -- 9.5 Homogeneous hypersurfaces 269 -- Appendix Basic material 281 -- A.1 Riemannian manifolds 281 -- A.2 Lie groups and Lie algebras 291 -- A.3 Homogeneous spaces 299 -- A.4 Symmetric spaces and flag manifolds 302.".
- catalog title "Submanifolds and holonomy / Jürgen Berndt, Sergio Console, and Carlos Olmos.".
- catalog type "text".