Matches in Harvard for { <http://id.lib.harvard.edu/aleph/009166982/catalog> ?p ?o. }
Showing items 1 to 28 of
28
with 100 items per page.
- catalog contributor b12916242.
- catalog created "c1993.".
- catalog date "1993".
- catalog date "c1993.".
- catalog dateCopyrighted "c1993.".
- catalog description "1. Introduction. 1.1. Symmetric polynomials. 1.2. Grobner bases. 1.3. What is invariant theory? 1.4. Torus invanants and integer programming -- 2. Invariant theory of finite groups. 2.1. Finiteness and degree bounds. 2.2. Counting the number of invariants. 2.3. The Cohen-Macaulay property. 2.4. Reflection groups. 2.5. Algorithms for computing fundamental invariants. 2.6. Grobner bases under finite group action. 2.7. Abelian groups and permutation groups -- 3. Bracket algebra and projective geometry. 3.1. The straightening algorithm. 3.2. The first fundamental theorem. 3.3. The Grassmann-Cayley algebra. 3.4. Applications to projective geometry. 3.5. Cayley factorization. 3.6. Invariants and covariants of binary forms. 3.7. Gordan's finiteness theorem -- 4. Invariants of the general linear group. 4.1. Representation theory of the general linear group. 4.2. Binary forms revisited. 4.3. Cayley's [Omega]-process and Hilbert finiteness theorem. 4.4. Invariants and covariants of forms.".
- catalog description "4.5. Lie algebra action and the symbolic method. 4.6. Hilbert's algorithm. 4.7. Degree bounds.".
- catalog description "Includes bibliographical references (p. [191]-195) and index.".
- catalog extent "197 p. :".
- catalog hasFormat "Algorithms in invariant theory.".
- catalog identifier "0387824456".
- catalog isFormatOf "Algorithms in invariant theory.".
- catalog isPartOf "Texts and monographs in symbolic computation, 0943-853X".
- catalog issued "1993".
- catalog issued "c1993.".
- catalog language "eng".
- catalog publisher "Wien ; New York : Springer-Verlag,".
- catalog relation "Algorithms in invariant theory.".
- catalog subject "512/.74 20".
- catalog subject "Algebra comutativa larpcal".
- catalog subject "Algorithms.".
- catalog subject "Geometry, Projective.".
- catalog subject "Invariants.".
- catalog subject "QA201 .S956 1993".
- catalog tableOfContents "1. Introduction. 1.1. Symmetric polynomials. 1.2. Grobner bases. 1.3. What is invariant theory? 1.4. Torus invanants and integer programming -- 2. Invariant theory of finite groups. 2.1. Finiteness and degree bounds. 2.2. Counting the number of invariants. 2.3. The Cohen-Macaulay property. 2.4. Reflection groups. 2.5. Algorithms for computing fundamental invariants. 2.6. Grobner bases under finite group action. 2.7. Abelian groups and permutation groups -- 3. Bracket algebra and projective geometry. 3.1. The straightening algorithm. 3.2. The first fundamental theorem. 3.3. The Grassmann-Cayley algebra. 3.4. Applications to projective geometry. 3.5. Cayley factorization. 3.6. Invariants and covariants of binary forms. 3.7. Gordan's finiteness theorem -- 4. Invariants of the general linear group. 4.1. Representation theory of the general linear group. 4.2. Binary forms revisited. 4.3. Cayley's [Omega]-process and Hilbert finiteness theorem. 4.4. Invariants and covariants of forms.".
- catalog tableOfContents "4.5. Lie algebra action and the symbolic method. 4.6. Hilbert's algorithm. 4.7. Degree bounds.".
- catalog title "Algorithms in invariant theory / Bernd Sturmfels.".
- catalog type "text".