Matches in Harvard for { <http://id.lib.harvard.edu/aleph/009408042/catalog> ?p ?o. }
Showing items 1 to 47 of
47
with 100 items per page.
- catalog abstract ""Computational Electrodynamics: The Finite-Difference Time-Domain Method is the essential reference for professional engineers, university professors and students using, teaching, or learning FDTD solutions to Maxwell's equations. The book provides a comprehensive tutorial of FDTD theory and techniques as well as details on the latest FDTD methods for the efficient design of key electronic components such as antennas for wireless communications devices, high-speed digital and microwave circuits, and integrated optics."--Jacket.".
- catalog contributor b13294410.
- catalog contributor b13294411.
- catalog created "c2000.".
- catalog date "2000".
- catalog date "c2000.".
- catalog dateCopyrighted "c2000.".
- catalog description ""Computational Electrodynamics: The Finite-Difference Time-Domain Method is the essential reference for professional engineers, university professors and students using, teaching, or learning FDTD solutions to Maxwell's equations. The book provides a comprehensive tutorial of FDTD theory and techniques as well as details on the latest FDTD methods for the efficient design of key electronic components such as antennas for wireless communications devices, high-speed digital and microwave circuits, and integrated optics."--Jacket.".
- catalog description "1 Electrodynamics Entering the 21st Century 1 -- 1.2 Heritage of Military Defense Applications 2 -- 1.3 Frequency-Domain Solution Techniques 3 -- 1.4 Rise of Finite-Difference Time-Domain Methods 3 -- 1.5 History of FDTD Techniques for Maxwell's Equations 5 -- 1.6 Characteristics of FDTD and Related Space-Grid Time-Domain Techniques 7 -- 1.6.1 Classes of Algorithms 7 -- 1.6.2 Predictive Dynamic Range 17 -- 1.6.3 Scaling to Very Large Problem Sizes 18 -- 1.7 Examples of Applications (including Color Plate Section, pages 9-16) 19 -- 1.7.1 Radar-Guided Missile 20 -- 1.7.2 High-Speed Computer Circuit-Board Module 21 -- 1.7.3 Power-Distribution System for a High-Speed Computer Multichip Module 22 -- 1.7.4 Microwave Amplifier 23 -- 1.7.5 Cellular Telephone 24 -- 1.7.6 Optical Microdisk Resonator 25 -- 1.7.7 Photonic Bandgap Microcavity Laser 27 -- 1.7.8 Colliding Spatial Solitons".
- catalog description "28 -- 2 One-Dimensional Scalar Wave Equation 35 -- 2.2 Propagating-Wave Solutions 35 -- 2.3 Dispersion Relation 36 -- 2.4 Finite Differences 38 -- 2.5 Finite-Difference Approximation of the Scalar Wave Equation 39 -- 2.6 Numerical Dispersion Relation 42 -- 2.6.1 Case 1: Very Fine Sampling in Time and Space ([Delta]t [right arrow] 0, [Delta]x [right arrow] 0) 43 -- 2.6.2 Case 2: Magic Time-Step (c[Delta]t = [Delta]x) 43 -- 2.6.3 Case 3: Dispersive Wave Propagation 44 -- 2.6.4 Example of Calculation of Numerical Phase Velocity and Attenuation 49 -- 2.6.5 Examples of Calculations of Pulse Propagation 51 -- 2.7 Numerical Stability 55 -- 2.7.1 Complex-Frequency Analysis 55 -- 2.7.2 Examples of Calculations Involving Numerical Instability 59 -- Appendix 2A Order of Accuracy 63 -- 2A.1 Lax-Richtmyer Equivalence Theorem 63 -- 2A.2 Limitations 64 --".
- catalog description "Alternating-Direction-Implicit Time-Stepping Algorithm for Operation Beyond the Courant Limit 160 -- 4.10.1 Numerical Formulation of the Zheng/Chen/Zhang Algorithm 162 -- 4.10.2 Numerical Stability 169 -- 4.10.3 Numerical Dispersion 171 -- 5 Incident Wave Source Conditions 175 -- 5.2 Pointwise E and H Hard Sources in One Dimension 176 -- 5.3 Pointwise E and H Hard Sources in Two Dimensions 178 -- 5.3.1 Green's Function for the Scalar Wave Equation in Two Dimensions 178 -- 5.3.2 Obtaining Comparative FDTD Data 179 -- 5.3.3 Results for Effective Action Radius of a Hard-Sourced Field Component 180 -- 5.4 J and M Current Sources in Three Dimensions 182 -- 5.4.1 Sources and Charging 183 -- 5.4.2 Sinusoidal Sources 184 -- 5.4.3 Transient (Pulse) Sources 185 -- 5.4.4 Intrinsic Lattice Capacitance 189 -- 5.4.5 Intrinsic Lattice Inductance 190 -- 5.4.6".
- catalog description "Bibliography on Stability of Finite-Difference Methods 65 -- 3 Introduction to Maxwell's Equations and the Yee Algorithm 67 -- 3.2 Maxwell's Equations in Three Dimensions 67 -- 3.3 Reduction to Two Dimensions 70 -- 3.3.1 TM[subscript z] Mode 71 -- 3.3.2 TE[subscript z] Mode 71 -- 3.4 Reduction to One Dimension 72 -- 3.4.1 x-Directed, z-Polarized TEM Mode 72 -- 3.4.2 x-Directed, y-Polarized TEM Mode 73 -- 3.5 Equivalence to the Wave Equation in One Dimension 74 -- 3.6 Yee Algorithm 75 -- 3.6.1 Basic Ideas 75 -- 3.6.2 Finite Differences and Notation 77 -- 3.6.3 Finite-Difference Expressions for Maxwell's Equations in Three Dimensions 80 -- 3.6.4 Space Region With a Continuous Variation of Material Properties 85 -- 3.6.5 Space Region With a Finite Number of Distinct Media 87 -- 3.6.6 Space Region With Nonpermeable Media 89 -- 3.6.7".
- catalog description "Case 2: Numerical Wave Propagation Along a Grid Diagonal 127 -- 4.6.3 Example of Calculation of Numerical Phase Velocity and Attenuation 129 -- 4.6.4 Example of Calculation of Wave Propagation 131 -- 4.7 Numerical Stability 133 -- 4.7.1 Complex-Frequency Analysis 133 -- 4.7.2 Example of a Numerically- Unstable Two-Dimensional FDTD Model 139 -- 4.8 Generalized Stability Problem 141 -- 4.8.1 Boundary Conditions 141 -- 4.8.2 Variable and Unstructured Meshing 142 -- 4.8.3 Lossy, Dispersive, Nonlinear, and Gain Materials 142 -- 4.9 Modified Yee-Based Algorithms for Improved Numerical Dispersion 142 -- 4.9.1 Strategy 1: Center a Specific Numerical Phase-Velocity Curve About c 143 -- 4.9.2 Strategy 2: Use Fourth-Order-Accurate Spatial Differences 143 -- 4.9.3 Strategy 3: Use Hexagonal Grids 152 -- 4.9.4 Strategy 4: Use Discrete Fourier Transforms to Calculate the Spatial Derivatives 156 -- 4.10".
- catalog description "Continuous Space 305 -- 7.6.2 Discrete Space 305 -- 7.7 Efficient Implementation of UPML in FDTD 308 -- 7.7.1 Derivation of the Finite-Difference Expressions 308 -- 7.7.2 Computer Implementation of the UPML 311 -- 7.8 Numerical Experiments With Berenger's Split-Field PML 314 -- 7.8.1 Outgoing Cylindrical Wave in a Two-Dimensional Open-Region Grid 314 -- 7.8.2 Outgoing Spherical Wave in a Three-Dimensional Open-Region Lattice 316 -- 7.8.3 Dispersive Wave Propagation in Metal Waveguides 318 -- 7.8.4 Dispersive and Multimode Wave Propagation in Dielectric Waveguides 320 -- 7.9 Numerical Experiments With UPML 322 -- 7.9.1 Current Source Radiating in an Unbounded Two-Dimensional Region 322 -- 7.9.2 Highly Elongated Domains 327 -- 7.9.3 Microstrip Transmission Line 330 -- 7.10 UPML Termination for Conductive Media 332 -- 7.10.1 Theory 332 -- 7.10.2".
- catalog description "Effect of Multiple Wave Reflections 271 -- 6.6.4 Basis of the Concurrent Complementary Operator Method 273 -- 6.6.5 Illustrative FDTD Modeling Results Obtained Using the C-COM 278 -- 7 Perfectly Matched Layer Absorbing Boundary Conditions / Stephen D. Gedney, Allen Taflove 285 -- 7.2 Plane Wave Incident Upon a Lossy Half-Space 286 -- 7.3 Plane Wave Incident Upon Berenger's PML Medium 288 -- 7.3.1 Two-Dimensional TE[subscript z] Case 289 -- 7.3.2 Two-Dimensional TM[subscript z] Case 293 -- 7.3.3 Three-Dimensional Case 294 -- 7.4 Stretched-Coordinatec Formulation of Berenger's PML 295 -- 7.5 An Anisotropic PML Absorbing Medium 298 -- 7.5.1 Perfectly Matched Uniaxial Medium 298 -- 7.5.2 Relationship to Berenger's Split-Field PML 301 -- 7.5.3 A Generalized Three-Dimensional Formulation 302 -- 7.5.4 Inhomogeneous Media 304 -- 7.6 Theoretical Performance of the PML 305 -- 7.6.1".
- catalog description "Impact Upon FDTD Simulations of Lumped-Element Capacitors and Inductors 191 -- 5.5 Plane-Wave Source Condition 193 -- 5.6 Total-Field/Scattered-Field Technique: Ideas and One-Dimensional Formulation 194 -- 5.6.1 Ideas 194 -- 5.6.2 One-Dimensional Formulation 197 -- 5.7 Two-Dimensional Formulation of the TF/SF Technique 201 -- 5.7.1 Consistency Conditions 203 -- 5.7.2 Calculation of the Incident Field 207 -- 5.7.3 Illustrative Example 212 -- 5.8 Three-Dimensional Formulation of the TF/SF Technique 212 -- 5.8.1 Consistency Conditions 216 -- 5.8.2 Calculation of the Incident Field 221 -- 5.9 Pure Scattered-Field Formulation 224 -- 5.9.1 Application to PEC Structures 224 -- 5.9.2 Application to Lossy Dielectric Structures 225 -- 5.9.3 Choice of Incident Plane-Wave Formulation 227 -- 5.10 Waveguide Source Conditions 227 -- 5.10.1 Pulsed Electric Field Modal Hard Source 228 -- 5.10.2".
- catalog description "Includes bibliographical references and index.".
- catalog description "Numerical Example: Termination of a Conductive Half-Space Medium 335 -- 7.11 UPML Termination for Dispersive Media 338 -- 7.11.1 Theory 338 -- 7.11.2 Numerical Example: Reflection by a Lorentz Medium 343 -- 8 Near-to-Far-Field Transformation 349 -- 8.2 Two-Dimensional Transformation, Phasor Domain 350 -- 8.2.1 Application of Green's Theorem 351 -- 8.2.2 Far-Field Limit 352 -- 8.2.3 Reduction to Standard Form 354 -- 8.3 Obtaining Phasor Quantities Via Discrete Fourier Transformation 356 -- 8.4 Surface Equivalence Theorem 359 -- 8.5 Extension to Three Dimensions, Phasor Domain 361 -- 8.6 Time-Domain Near-to-Far-Field Transformation 366 -- 9 Dispersive and Nonlinear Materials 373.".
- catalog description "Reduction to the Two-Dimensional TM[subscript z] and TE[subscript z] Modes 91 -- 3.6.8 Interpretation as Faraday's and Ampere's Laws in Integral Form 93 -- 3.6.9 Divergence-Free Nature 96 -- 3.7 Alternative Finite-Difference Grids 98 -- 3.7.1 Cartesian Grids 99 -- 3.7.2 Hexagonal Girds 101 -- 3.7.3 Tetradecahedron/Dual-Tetrahedron Mesh in Three Dimensions 104 -- 4 Numerical Dispersion and Stability 109 -- 4.2 Derivation of the Numerical Dispersion Relation for Two-Dimensional Wave Propagation 110 -- 4.3 Extension to Three Dimensions 112 -- 4.4 Comparison With the Ideal Dispersion Case 113 -- 4.5 Anisotropy of the Numerical Phase Velocity 114 -- 4.5.1 Sample Values of Numerical Phase Velocity 114 -- 4.5.2 Intrinsic Grid Velocity Anisotropy 120 -- 4.6 Complex-Valued Numerical Wavenumbers 124 -- 4.6.1 Case 1: Numerical Wave Propagation Along the Principal Lattice Axes 124 -- 4.6.2".
- catalog description "Total-Field/Reflected-Field Modal Formulation 229 -- 5.10.3 Resistive Source and Load Conditions 230 -- 6 Analytical Absorbing Boundary Conditions 235 -- 6.2 Bayliss-Turkel Radiation Operators 237 -- 6.2.1 Spherical Coordinates 238 -- 6.2.2 Cylindrical Coordinates 241 -- 6.3 Engquist-Majda One-Way Wave Equations 244 -- 6.3.1 One-Term and Two-Term Taylor Series Approximations 245 -- 6.3.2 Mur Finite-Difference Scheme 248 -- 6.3.3 Trefethen-Halpern Generalized and Higher Order ABCs 251 -- 6.3.4 Theoretical Reflection Coefficient Analysis 253 -- 6.3.5 Numerical Experiments 256 -- 6.4 Higdon Radiation Operators 261 -- 6.4.1 Formulation 261 -- 6.4.2 First Two Higdon Operators 263 -- 6.5 Liao Extrapolation in Space and Time 265 -- 6.5.1 Formulation 265 -- 6.6 Ramahi Complementary Operators 269 -- 6.6.1 Basic Idea 269 -- 6.6.2 Complementary Operators 270 -- 6.6.3".
- catalog extent "xxiii, 852 p. :".
- catalog identifier "1580530761".
- catalog isPartOf "Artech House antennas and propagation library".
- catalog issued "2000".
- catalog issued "c2000.".
- catalog language "eng".
- catalog publisher "Boston : Artech House,".
- catalog subject "537.6 21".
- catalog subject "Electromagnetism.".
- catalog subject "Integro-differential equations Numerical solutions.".
- catalog subject "Maxwell equations Data processing.".
- catalog subject "Maxwell equations Numerical solutions.".
- catalog subject "Moments method (Statistics)".
- catalog subject "QC760 .T34 2000".
- catalog tableOfContents "1 Electrodynamics Entering the 21st Century 1 -- 1.2 Heritage of Military Defense Applications 2 -- 1.3 Frequency-Domain Solution Techniques 3 -- 1.4 Rise of Finite-Difference Time-Domain Methods 3 -- 1.5 History of FDTD Techniques for Maxwell's Equations 5 -- 1.6 Characteristics of FDTD and Related Space-Grid Time-Domain Techniques 7 -- 1.6.1 Classes of Algorithms 7 -- 1.6.2 Predictive Dynamic Range 17 -- 1.6.3 Scaling to Very Large Problem Sizes 18 -- 1.7 Examples of Applications (including Color Plate Section, pages 9-16) 19 -- 1.7.1 Radar-Guided Missile 20 -- 1.7.2 High-Speed Computer Circuit-Board Module 21 -- 1.7.3 Power-Distribution System for a High-Speed Computer Multichip Module 22 -- 1.7.4 Microwave Amplifier 23 -- 1.7.5 Cellular Telephone 24 -- 1.7.6 Optical Microdisk Resonator 25 -- 1.7.7 Photonic Bandgap Microcavity Laser 27 -- 1.7.8 Colliding Spatial Solitons".
- catalog tableOfContents "28 -- 2 One-Dimensional Scalar Wave Equation 35 -- 2.2 Propagating-Wave Solutions 35 -- 2.3 Dispersion Relation 36 -- 2.4 Finite Differences 38 -- 2.5 Finite-Difference Approximation of the Scalar Wave Equation 39 -- 2.6 Numerical Dispersion Relation 42 -- 2.6.1 Case 1: Very Fine Sampling in Time and Space ([Delta]t [right arrow] 0, [Delta]x [right arrow] 0) 43 -- 2.6.2 Case 2: Magic Time-Step (c[Delta]t = [Delta]x) 43 -- 2.6.3 Case 3: Dispersive Wave Propagation 44 -- 2.6.4 Example of Calculation of Numerical Phase Velocity and Attenuation 49 -- 2.6.5 Examples of Calculations of Pulse Propagation 51 -- 2.7 Numerical Stability 55 -- 2.7.1 Complex-Frequency Analysis 55 -- 2.7.2 Examples of Calculations Involving Numerical Instability 59 -- Appendix 2A Order of Accuracy 63 -- 2A.1 Lax-Richtmyer Equivalence Theorem 63 -- 2A.2 Limitations 64 --".
- catalog tableOfContents "Alternating-Direction-Implicit Time-Stepping Algorithm for Operation Beyond the Courant Limit 160 -- 4.10.1 Numerical Formulation of the Zheng/Chen/Zhang Algorithm 162 -- 4.10.2 Numerical Stability 169 -- 4.10.3 Numerical Dispersion 171 -- 5 Incident Wave Source Conditions 175 -- 5.2 Pointwise E and H Hard Sources in One Dimension 176 -- 5.3 Pointwise E and H Hard Sources in Two Dimensions 178 -- 5.3.1 Green's Function for the Scalar Wave Equation in Two Dimensions 178 -- 5.3.2 Obtaining Comparative FDTD Data 179 -- 5.3.3 Results for Effective Action Radius of a Hard-Sourced Field Component 180 -- 5.4 J and M Current Sources in Three Dimensions 182 -- 5.4.1 Sources and Charging 183 -- 5.4.2 Sinusoidal Sources 184 -- 5.4.3 Transient (Pulse) Sources 185 -- 5.4.4 Intrinsic Lattice Capacitance 189 -- 5.4.5 Intrinsic Lattice Inductance 190 -- 5.4.6".
- catalog tableOfContents "Bibliography on Stability of Finite-Difference Methods 65 -- 3 Introduction to Maxwell's Equations and the Yee Algorithm 67 -- 3.2 Maxwell's Equations in Three Dimensions 67 -- 3.3 Reduction to Two Dimensions 70 -- 3.3.1 TM[subscript z] Mode 71 -- 3.3.2 TE[subscript z] Mode 71 -- 3.4 Reduction to One Dimension 72 -- 3.4.1 x-Directed, z-Polarized TEM Mode 72 -- 3.4.2 x-Directed, y-Polarized TEM Mode 73 -- 3.5 Equivalence to the Wave Equation in One Dimension 74 -- 3.6 Yee Algorithm 75 -- 3.6.1 Basic Ideas 75 -- 3.6.2 Finite Differences and Notation 77 -- 3.6.3 Finite-Difference Expressions for Maxwell's Equations in Three Dimensions 80 -- 3.6.4 Space Region With a Continuous Variation of Material Properties 85 -- 3.6.5 Space Region With a Finite Number of Distinct Media 87 -- 3.6.6 Space Region With Nonpermeable Media 89 -- 3.6.7".
- catalog tableOfContents "Case 2: Numerical Wave Propagation Along a Grid Diagonal 127 -- 4.6.3 Example of Calculation of Numerical Phase Velocity and Attenuation 129 -- 4.6.4 Example of Calculation of Wave Propagation 131 -- 4.7 Numerical Stability 133 -- 4.7.1 Complex-Frequency Analysis 133 -- 4.7.2 Example of a Numerically- Unstable Two-Dimensional FDTD Model 139 -- 4.8 Generalized Stability Problem 141 -- 4.8.1 Boundary Conditions 141 -- 4.8.2 Variable and Unstructured Meshing 142 -- 4.8.3 Lossy, Dispersive, Nonlinear, and Gain Materials 142 -- 4.9 Modified Yee-Based Algorithms for Improved Numerical Dispersion 142 -- 4.9.1 Strategy 1: Center a Specific Numerical Phase-Velocity Curve About c 143 -- 4.9.2 Strategy 2: Use Fourth-Order-Accurate Spatial Differences 143 -- 4.9.3 Strategy 3: Use Hexagonal Grids 152 -- 4.9.4 Strategy 4: Use Discrete Fourier Transforms to Calculate the Spatial Derivatives 156 -- 4.10".
- catalog tableOfContents "Continuous Space 305 -- 7.6.2 Discrete Space 305 -- 7.7 Efficient Implementation of UPML in FDTD 308 -- 7.7.1 Derivation of the Finite-Difference Expressions 308 -- 7.7.2 Computer Implementation of the UPML 311 -- 7.8 Numerical Experiments With Berenger's Split-Field PML 314 -- 7.8.1 Outgoing Cylindrical Wave in a Two-Dimensional Open-Region Grid 314 -- 7.8.2 Outgoing Spherical Wave in a Three-Dimensional Open-Region Lattice 316 -- 7.8.3 Dispersive Wave Propagation in Metal Waveguides 318 -- 7.8.4 Dispersive and Multimode Wave Propagation in Dielectric Waveguides 320 -- 7.9 Numerical Experiments With UPML 322 -- 7.9.1 Current Source Radiating in an Unbounded Two-Dimensional Region 322 -- 7.9.2 Highly Elongated Domains 327 -- 7.9.3 Microstrip Transmission Line 330 -- 7.10 UPML Termination for Conductive Media 332 -- 7.10.1 Theory 332 -- 7.10.2".
- catalog tableOfContents "Effect of Multiple Wave Reflections 271 -- 6.6.4 Basis of the Concurrent Complementary Operator Method 273 -- 6.6.5 Illustrative FDTD Modeling Results Obtained Using the C-COM 278 -- 7 Perfectly Matched Layer Absorbing Boundary Conditions / Stephen D. Gedney, Allen Taflove 285 -- 7.2 Plane Wave Incident Upon a Lossy Half-Space 286 -- 7.3 Plane Wave Incident Upon Berenger's PML Medium 288 -- 7.3.1 Two-Dimensional TE[subscript z] Case 289 -- 7.3.2 Two-Dimensional TM[subscript z] Case 293 -- 7.3.3 Three-Dimensional Case 294 -- 7.4 Stretched-Coordinatec Formulation of Berenger's PML 295 -- 7.5 An Anisotropic PML Absorbing Medium 298 -- 7.5.1 Perfectly Matched Uniaxial Medium 298 -- 7.5.2 Relationship to Berenger's Split-Field PML 301 -- 7.5.3 A Generalized Three-Dimensional Formulation 302 -- 7.5.4 Inhomogeneous Media 304 -- 7.6 Theoretical Performance of the PML 305 -- 7.6.1".
- catalog tableOfContents "Impact Upon FDTD Simulations of Lumped-Element Capacitors and Inductors 191 -- 5.5 Plane-Wave Source Condition 193 -- 5.6 Total-Field/Scattered-Field Technique: Ideas and One-Dimensional Formulation 194 -- 5.6.1 Ideas 194 -- 5.6.2 One-Dimensional Formulation 197 -- 5.7 Two-Dimensional Formulation of the TF/SF Technique 201 -- 5.7.1 Consistency Conditions 203 -- 5.7.2 Calculation of the Incident Field 207 -- 5.7.3 Illustrative Example 212 -- 5.8 Three-Dimensional Formulation of the TF/SF Technique 212 -- 5.8.1 Consistency Conditions 216 -- 5.8.2 Calculation of the Incident Field 221 -- 5.9 Pure Scattered-Field Formulation 224 -- 5.9.1 Application to PEC Structures 224 -- 5.9.2 Application to Lossy Dielectric Structures 225 -- 5.9.3 Choice of Incident Plane-Wave Formulation 227 -- 5.10 Waveguide Source Conditions 227 -- 5.10.1 Pulsed Electric Field Modal Hard Source 228 -- 5.10.2".
- catalog tableOfContents "Numerical Example: Termination of a Conductive Half-Space Medium 335 -- 7.11 UPML Termination for Dispersive Media 338 -- 7.11.1 Theory 338 -- 7.11.2 Numerical Example: Reflection by a Lorentz Medium 343 -- 8 Near-to-Far-Field Transformation 349 -- 8.2 Two-Dimensional Transformation, Phasor Domain 350 -- 8.2.1 Application of Green's Theorem 351 -- 8.2.2 Far-Field Limit 352 -- 8.2.3 Reduction to Standard Form 354 -- 8.3 Obtaining Phasor Quantities Via Discrete Fourier Transformation 356 -- 8.4 Surface Equivalence Theorem 359 -- 8.5 Extension to Three Dimensions, Phasor Domain 361 -- 8.6 Time-Domain Near-to-Far-Field Transformation 366 -- 9 Dispersive and Nonlinear Materials 373.".
- catalog tableOfContents "Reduction to the Two-Dimensional TM[subscript z] and TE[subscript z] Modes 91 -- 3.6.8 Interpretation as Faraday's and Ampere's Laws in Integral Form 93 -- 3.6.9 Divergence-Free Nature 96 -- 3.7 Alternative Finite-Difference Grids 98 -- 3.7.1 Cartesian Grids 99 -- 3.7.2 Hexagonal Girds 101 -- 3.7.3 Tetradecahedron/Dual-Tetrahedron Mesh in Three Dimensions 104 -- 4 Numerical Dispersion and Stability 109 -- 4.2 Derivation of the Numerical Dispersion Relation for Two-Dimensional Wave Propagation 110 -- 4.3 Extension to Three Dimensions 112 -- 4.4 Comparison With the Ideal Dispersion Case 113 -- 4.5 Anisotropy of the Numerical Phase Velocity 114 -- 4.5.1 Sample Values of Numerical Phase Velocity 114 -- 4.5.2 Intrinsic Grid Velocity Anisotropy 120 -- 4.6 Complex-Valued Numerical Wavenumbers 124 -- 4.6.1 Case 1: Numerical Wave Propagation Along the Principal Lattice Axes 124 -- 4.6.2".
- catalog tableOfContents "Total-Field/Reflected-Field Modal Formulation 229 -- 5.10.3 Resistive Source and Load Conditions 230 -- 6 Analytical Absorbing Boundary Conditions 235 -- 6.2 Bayliss-Turkel Radiation Operators 237 -- 6.2.1 Spherical Coordinates 238 -- 6.2.2 Cylindrical Coordinates 241 -- 6.3 Engquist-Majda One-Way Wave Equations 244 -- 6.3.1 One-Term and Two-Term Taylor Series Approximations 245 -- 6.3.2 Mur Finite-Difference Scheme 248 -- 6.3.3 Trefethen-Halpern Generalized and Higher Order ABCs 251 -- 6.3.4 Theoretical Reflection Coefficient Analysis 253 -- 6.3.5 Numerical Experiments 256 -- 6.4 Higdon Radiation Operators 261 -- 6.4.1 Formulation 261 -- 6.4.2 First Two Higdon Operators 263 -- 6.5 Liao Extrapolation in Space and Time 265 -- 6.5.1 Formulation 265 -- 6.6 Ramahi Complementary Operators 269 -- 6.6.1 Basic Idea 269 -- 6.6.2 Complementary Operators 270 -- 6.6.3".
- catalog title "Computational electrodynamics : the finite-difference time-domain method.".
- catalog type "text".