Matches in Library of Congress for { <http://lccn.loc.gov/00053772> ?p ?o. }
Showing items 1 to 22 of
22
with 100 items per page.
- 00053772 contributor B47615.
- 00053772 created "2001.".
- 00053772 date "2001".
- 00053772 date "2001.".
- 00053772 dateCopyrighted "2001.".
- 00053772 description "Includes bibliographical references (p. 403-408) and index.".
- 00053772 description "Machine generated contents note: CHAPTER I. THE CLASSIFICATION OF RANDOM WALK -- 1. Introduction -- 2. Periodicity and recurrence behavior -- 3. Some measure theory -- 4. The range of a random walk -- 5. The strong ratio theorem -- Problems CHAPTER II. HARMONIC ANALYSIS -- 6. Characteristic functions and moments -- 7. Periodicity -- 8. Recurrence criteria and examples -- 9. The renewal theorem -- Problems CHAPTER III. Two-DIMENSIONAL RECURRENT RANDOM WALK -- 10. Generalities -- 11. The hitting probabilities of a finite set -- 12. The potential kernel A(x,y) -- 13. Some potential theory -- 14. The Green function of a finite set -- 15. Simple random walk in the plane -- 16. The time dependent behavior -- Problems CHAPTER IV. RANDOM WALK ON A HALF-LINE -- 17. The hitting probability of the right half-line -- 18. Random walk with finite mean -- 19. The Green function and the gambler's ruin problem -- 20. Fluctuations and the arc-sine law -- Problems -- CHAPTER V. RANDOM WALK ON A INTERVAL -- 21. Simple random walk -- 22. The absorption problem with mean zero, finite variance -- 23. The Green function for the absorption problem -- Problems CHAPTER VI. TRANSIENT RANDOM WALK -- 24. The Green function G(x,y) -- 25. Hitting probabilities -- 26. Random walk in three-space with mean zero and finite -- second moments -- 27. Applications to analysis -- Problems CHAPTER VII. RECURRENT RANDOM WALK -- 28. The existence of the one-dimensional potential kernel -- 29. The asymptotic behavior of the potential kernel -- 30. Hitting probabilities and the Green function -- 31. The uniqueness of the recurrent potential kernel -- 32. The hitting time of a single point -- Problems -- BIBLIOGRAPHY SUPPLEMENTARY BIBLIOGRAPHY INDEX.".
- 00053772 extent "xii, 408 p. :".
- 00053772 identifier "0387951547 (pbk.)".
- 00053772 identifier 00053772-d.html.
- 00053772 identifier 00053772.html.
- 00053772 isPartOf "Graduate texts in mathematics ; 34".
- 00053772 issued "2001".
- 00053772 issued "2001.".
- 00053772 language "eng".
- 00053772 publisher "New York : Springer,".
- 00053772 subject "519.2/82 21".
- 00053772 subject "QA274.73 .S65 2001".
- 00053772 subject "Random walks (Mathematics)".
- 00053772 tableOfContents "Machine generated contents note: CHAPTER I. THE CLASSIFICATION OF RANDOM WALK -- 1. Introduction -- 2. Periodicity and recurrence behavior -- 3. Some measure theory -- 4. The range of a random walk -- 5. The strong ratio theorem -- Problems CHAPTER II. HARMONIC ANALYSIS -- 6. Characteristic functions and moments -- 7. Periodicity -- 8. Recurrence criteria and examples -- 9. The renewal theorem -- Problems CHAPTER III. Two-DIMENSIONAL RECURRENT RANDOM WALK -- 10. Generalities -- 11. The hitting probabilities of a finite set -- 12. The potential kernel A(x,y) -- 13. Some potential theory -- 14. The Green function of a finite set -- 15. Simple random walk in the plane -- 16. The time dependent behavior -- Problems CHAPTER IV. RANDOM WALK ON A HALF-LINE -- 17. The hitting probability of the right half-line -- 18. Random walk with finite mean -- 19. The Green function and the gambler's ruin problem -- 20. Fluctuations and the arc-sine law -- Problems -- CHAPTER V. RANDOM WALK ON A INTERVAL -- 21. Simple random walk -- 22. The absorption problem with mean zero, finite variance -- 23. The Green function for the absorption problem -- Problems CHAPTER VI. TRANSIENT RANDOM WALK -- 24. The Green function G(x,y) -- 25. Hitting probabilities -- 26. Random walk in three-space with mean zero and finite -- second moments -- 27. Applications to analysis -- Problems CHAPTER VII. RECURRENT RANDOM WALK -- 28. The existence of the one-dimensional potential kernel -- 29. The asymptotic behavior of the potential kernel -- 30. Hitting probabilities and the Green function -- 31. The uniqueness of the recurrent potential kernel -- 32. The hitting time of a single point -- Problems -- BIBLIOGRAPHY SUPPLEMENTARY BIBLIOGRAPHY INDEX.".
- 00053772 title "Principles of random walk / Frank Spitzer.".
- 00053772 type "text".