Matches in Library of Congress for { <http://lccn.loc.gov/2002071070> ?p ?o. }
Showing items 1 to 21 of
21
with 100 items per page.
- 2002071070 contributor B9241416.
- 2002071070 created "2002.".
- 2002071070 date "2002".
- 2002071070 date "2002.".
- 2002071070 dateCopyrighted "2002.".
- 2002071070 description "Includes bibliographical references and index.".
- 2002071070 description "Machine generated contents note: 1. INTRODUCTION -- 1.1 Problem statement -- 1.2 The importance of semidefinite programming -- 1.3 Special cases of semidefinite programming -- 1.4 Applications in combinatorial optimization -- 1.5 Applications in approximation theory -- 1.6 Engineering applications -- 1.7 Interior point methods -- 1.8 Other algorithms for SDP -- 1.9 The complexity of SDP -- 1.10 Review literature and internet resources -- Part I Theory and Algorithms -- 2. DUALITY, OPTIMALITY, AND DEGENERACY -- 2.1 Problems in standard form -- 2.2 Weak and strong duality -- 2.3 Feasibility issues -- 2.4 Optimality and complementarity -- 2.5 Degeneracy -- 3. THE CENTRAL PATH -- 3.1 Existence and uniqueness of the central path -- 3.2 Analyticity of the central path -- 3.3 Limit points of the central path -- 3.4 Convergence in the case of strict complementarity -- 3.5 Convergence proof in the absence of strict complementarity -- 3.6 Convergence rate of the central path -- 4. SELF-DUAL EMBEDDINGS -- 4.1 Introduction -- 4.2 The embedding strategy -- 4.3 Solving the embedding problem -- 4.4 Interpreting the solution of the embedding problem -- 4.5 Separating small and large variables -- 4.6 Remaining duality and feasibility issues -- 5. THE PRIMAL LOGARITHMIC BARRIER METHOD -- 5.1 Introduction -- 5.2 A centrality function -- 5.3 The projected Newton direction for the primal barrier functioi -- 5.4 The affine-scaling direction -- 5.5 Behaviour near the central path -- 5.6 Updating the centering parameter -- 5.7 Complexity analysis -- 5.8 The dual algorithm -- 5.9 Large update methods -- 5.10 The dual method and combinatorial relaxations -- 6. PRIMAL-DUAL AFFINE-SCALING METHODS -- 6.1 Introduction -- 6.2 The Nesterov-Todd (NT) scaling -- 6.3 The primal-dual affine-scaling and Dikin-type methods -- 6.4 Functions of centrality -- 6.5 Feasibility of the Dikin-type step -- 6.6 Complexity analysis for the Dikin-type method -- 6.7 Analysis of the primal-dual affine-scaling method -- 7. PRIMAL-DUAL PATH-FOLLOWING METHODS -- 7.1 The path-following approach -- 7.2 Feasibility of the full NT step -- 7.3 Quadratic convergence to the central path -- 7.4 Updating the barrier parameter p -- 7.5 A long step path-following method -- 7.6 Predictor-corrector methods -- 8. PRIMAL-DUAL POTENTIAL REDUCTION METHODS -- 8.1 Introduction -- 8.2 Determining step lengths via plane searches of the potential -- 8.3 The centrality function I -- 8.4 Complexity analysis in a potential reduction framework -- 8.5 A bound on the potential reduction -- 8.6 The potential reduction method of Nesterov and Todd -- Part II Selected Applications -- 9. CONVEX QUADRATIC APPROXIMATION -- 9.1 Preliminaries -- 9.2 Quadratic approximation in the univariate case -- 9.3 Quadratic approximation for the multivariate case -- 10. THE LOVASZ 0-FUNCTION -- 10.1 Introduction -- 10.2 The sandwich theorem -- 10.3 Other formulations of the 0-function -- 10.4 The Shannon capacity of a graph -- 11. GRAPH COLOURING AND THE MAX-K-CUT PROBLEM -- 11.1 Introduction -- 11.2 The 0-approximation of the chromatic number -- 11.3 An upper bound for the optimal value of MAX-k-CUT -- 11.4 Approximation guarantees -- 11.5 A randomized MAX-k-CUT algorithm -- 11.6 Analysis of the algorithm -- 11.7 Approximation results for MAX-k-CUT -- 11.8 Approximate colouring of n-colourable graphs -- 12. THE STABILITY NUMBER OF A GRAPH -- 12.1 Preliminaries -- 12.2 The stability number via copositive programming -- 12.3 Approximations of the copositive cone -- 12.4 Application to the maximum stable set problem -- 12.5 The strength of low-order approximations -- 12.6 Related literature -- 12.7 Extensions: standard quadratic optimization -- 13. THE SATISFIABILITY PROBLEM -- 13.1 Introduction -- 13.2 Boolean quadratic representations of clauses -- 13.3 From Boolean quadratic inequality to SDP -- 13.4 Detecting unsatisfiability of some classes of formulae -- 13.5 Rounding procedures -- 13.6 Approximation guarantees for the rounding schemes -- Appendices -- A- Properties of positive (semi)definite matrices -- A.1 Characterizations of positive (semi)definiteness -- A.2 Spectral properties -- A.3 The trace operator and the Frobenius norm -- A.3 The trace operator and the Frobenius norm -- A.4 The Lowner partial order and the Schur complement theorem -- B- Background material on convex optimization -- B.1 Convex analysis -- B.2 Duality in convex optimization -- B.3 The KKT optimality conditions -- C- The function log det(X) -- D- Real analytic functions -- E- The (symmetric) Kronecker product -- E.1 The Kronecker product -- E.2 The symmetric Kronecker product -- F- Search directions for the embedding problem -- G- Regularized duals -- References -- Index.".
- 2002071070 extent "xvi, 283 p. :".
- 2002071070 identifier "1402005474 (alk. paper)".
- 2002071070 identifier 2002071070-d.html.
- 2002071070 identifier 2002071070.html.
- 2002071070 isPartOf "Applied optimization ; v. 65".
- 2002071070 issued "2002".
- 2002071070 issued "2002.".
- 2002071070 language "eng".
- 2002071070 publisher "Dordrecht ; Boston : Kluwer Academic Publishers,".
- 2002071070 subject "519.7/2 21".
- 2002071070 subject "T57.74 .K59 2002".
- 2002071070 tableOfContents "Machine generated contents note: 1. INTRODUCTION -- 1.1 Problem statement -- 1.2 The importance of semidefinite programming -- 1.3 Special cases of semidefinite programming -- 1.4 Applications in combinatorial optimization -- 1.5 Applications in approximation theory -- 1.6 Engineering applications -- 1.7 Interior point methods -- 1.8 Other algorithms for SDP -- 1.9 The complexity of SDP -- 1.10 Review literature and internet resources -- Part I Theory and Algorithms -- 2. DUALITY, OPTIMALITY, AND DEGENERACY -- 2.1 Problems in standard form -- 2.2 Weak and strong duality -- 2.3 Feasibility issues -- 2.4 Optimality and complementarity -- 2.5 Degeneracy -- 3. THE CENTRAL PATH -- 3.1 Existence and uniqueness of the central path -- 3.2 Analyticity of the central path -- 3.3 Limit points of the central path -- 3.4 Convergence in the case of strict complementarity -- 3.5 Convergence proof in the absence of strict complementarity -- 3.6 Convergence rate of the central path -- 4. SELF-DUAL EMBEDDINGS -- 4.1 Introduction -- 4.2 The embedding strategy -- 4.3 Solving the embedding problem -- 4.4 Interpreting the solution of the embedding problem -- 4.5 Separating small and large variables -- 4.6 Remaining duality and feasibility issues -- 5. THE PRIMAL LOGARITHMIC BARRIER METHOD -- 5.1 Introduction -- 5.2 A centrality function -- 5.3 The projected Newton direction for the primal barrier functioi -- 5.4 The affine-scaling direction -- 5.5 Behaviour near the central path -- 5.6 Updating the centering parameter -- 5.7 Complexity analysis -- 5.8 The dual algorithm -- 5.9 Large update methods -- 5.10 The dual method and combinatorial relaxations -- 6. PRIMAL-DUAL AFFINE-SCALING METHODS -- 6.1 Introduction -- 6.2 The Nesterov-Todd (NT) scaling -- 6.3 The primal-dual affine-scaling and Dikin-type methods -- 6.4 Functions of centrality -- 6.5 Feasibility of the Dikin-type step -- 6.6 Complexity analysis for the Dikin-type method -- 6.7 Analysis of the primal-dual affine-scaling method -- 7. PRIMAL-DUAL PATH-FOLLOWING METHODS -- 7.1 The path-following approach -- 7.2 Feasibility of the full NT step -- 7.3 Quadratic convergence to the central path -- 7.4 Updating the barrier parameter p -- 7.5 A long step path-following method -- 7.6 Predictor-corrector methods -- 8. PRIMAL-DUAL POTENTIAL REDUCTION METHODS -- 8.1 Introduction -- 8.2 Determining step lengths via plane searches of the potential -- 8.3 The centrality function I -- 8.4 Complexity analysis in a potential reduction framework -- 8.5 A bound on the potential reduction -- 8.6 The potential reduction method of Nesterov and Todd -- Part II Selected Applications -- 9. CONVEX QUADRATIC APPROXIMATION -- 9.1 Preliminaries -- 9.2 Quadratic approximation in the univariate case -- 9.3 Quadratic approximation for the multivariate case -- 10. THE LOVASZ 0-FUNCTION -- 10.1 Introduction -- 10.2 The sandwich theorem -- 10.3 Other formulations of the 0-function -- 10.4 The Shannon capacity of a graph -- 11. GRAPH COLOURING AND THE MAX-K-CUT PROBLEM -- 11.1 Introduction -- 11.2 The 0-approximation of the chromatic number -- 11.3 An upper bound for the optimal value of MAX-k-CUT -- 11.4 Approximation guarantees -- 11.5 A randomized MAX-k-CUT algorithm -- 11.6 Analysis of the algorithm -- 11.7 Approximation results for MAX-k-CUT -- 11.8 Approximate colouring of n-colourable graphs -- 12. THE STABILITY NUMBER OF A GRAPH -- 12.1 Preliminaries -- 12.2 The stability number via copositive programming -- 12.3 Approximations of the copositive cone -- 12.4 Application to the maximum stable set problem -- 12.5 The strength of low-order approximations -- 12.6 Related literature -- 12.7 Extensions: standard quadratic optimization -- 13. THE SATISFIABILITY PROBLEM -- 13.1 Introduction -- 13.2 Boolean quadratic representations of clauses -- 13.3 From Boolean quadratic inequality to SDP -- 13.4 Detecting unsatisfiability of some classes of formulae -- 13.5 Rounding procedures -- 13.6 Approximation guarantees for the rounding schemes -- Appendices -- A- Properties of positive (semi)definite matrices -- A.1 Characterizations of positive (semi)definiteness -- A.2 Spectral properties -- A.3 The trace operator and the Frobenius norm -- A.3 The trace operator and the Frobenius norm -- A.4 The Lowner partial order and the Schur complement theorem -- B- Background material on convex optimization -- B.1 Convex analysis -- B.2 Duality in convex optimization -- B.3 The KKT optimality conditions -- C- The function log det(X) -- D- Real analytic functions -- E- The (symmetric) Kronecker product -- E.1 The Kronecker product -- E.2 The symmetric Kronecker product -- F- Search directions for the embedding problem -- G- Regularized duals -- References -- Index.".
- 2002071070 title "Aspects of semidefinite programming : interior point algorithms and selected applications / by Etienne de Klerk.".
- 2002071070 type "text".