Matches in Library of Congress for { <http://lccn.loc.gov/2002071086> ?p ?o. }
Showing items 1 to 23 of
23
with 100 items per page.
- 2002071086 contributor B9241429.
- 2002071086 contributor B9241430.
- 2002071086 created "c2002.".
- 2002071086 date "2002".
- 2002071086 date "c2002.".
- 2002071086 dateCopyrighted "c2002.".
- 2002071086 description "Includes bibliographical references (p. 247-256) and index.".
- 2002071086 description "Machine generated contents note: 1 Convergence spaces -- 1.1 Prelim inaries -- 1.2 Initial and final convergence structures -- 1.3 Special convergence spaces, modifications -- 1.4 Compactness -- 1.5 The continuous convergence structure -- 1.6 Countability properties and sequences in convergence spaces -- 1.7 Sequential convergence structures -- 1.8 Categorical aspects --2 Uniform convergence spaces -- 2.1 Generalities on uniform convergence spaces -- 2.2 Initial and final uniform convergence structures -- 2.3 Complete uniform convergence spaces -- 2.4 The Arzela-Ascoli thedrem -- 2.5 The uniform convergence structure of a convergence group 3 Convergence vector spaces -- 3.1 Convergence groups -- 3.2 Generalities on convergence vector spaces -- 3.3 Initial and final vector space convergence structures -- 3.4 Projective and inductive limits of convergence vector spaces -- 3.5 The locally convex topological modification -- 3.6 Countability axioms for convergence vector spaces -- 3.7 Boundedness -- 3.8 Notes on bornological vector spaces -- 4 Duality --4.1 The dual of a convergence vector space -- 4.2 Reflexivity -- 4.3 The dual of a locally convex topological vector space -- 4.4 An application of continuous duality -- 4.5 Notes -- 5 Hahn-Banach extension theorems --5.1 General results -- 5.2 Hahn-Banach spaces -- 5.3 Extending to the adherence -- 5.4 Strong Hahn-Banach spaces -- 5.5 An application to partial differential equations -- 5.6 Notes -- 6 The closed graph theorem --6.1 Ultracompleteness -- 6.2 The main theorems -- 6.3 An application to web spaces --7 The Banach-Steinhaus theorem --7.1 Equicontinuous sets -- 7.2 Banach-Steinhaus pairs -- 7.3 The continuity of bilinear mappings -- 8 Duality theory for convergence groups -- 8.1 Reflexivity -- 8.2 Duality for convergence vector spaces -- 8.3 Subgroups and quotient groups -- 8.4 Topological groups -- 8.5 Groups of unimodular continuous functions -- 8.6 c- and co-duality for topological groups.".
- 2002071086 extent "xiii, 264 p. ;".
- 2002071086 identifier "1402005660 (alk. paper)".
- 2002071086 identifier 2002071086-d.html.
- 2002071086 identifier 2002071086.html.
- 2002071086 issued "2002".
- 2002071086 issued "c2002.".
- 2002071086 language "eng".
- 2002071086 publisher "Dordrecht ; Boston : Kluwer Academic Publishers,".
- 2002071086 subject "515/.7 21".
- 2002071086 subject "Convergence.".
- 2002071086 subject "Functional analysis.".
- 2002071086 subject "QA320 .B35 2002".
- 2002071086 tableOfContents "Machine generated contents note: 1 Convergence spaces -- 1.1 Prelim inaries -- 1.2 Initial and final convergence structures -- 1.3 Special convergence spaces, modifications -- 1.4 Compactness -- 1.5 The continuous convergence structure -- 1.6 Countability properties and sequences in convergence spaces -- 1.7 Sequential convergence structures -- 1.8 Categorical aspects --2 Uniform convergence spaces -- 2.1 Generalities on uniform convergence spaces -- 2.2 Initial and final uniform convergence structures -- 2.3 Complete uniform convergence spaces -- 2.4 The Arzela-Ascoli thedrem -- 2.5 The uniform convergence structure of a convergence group 3 Convergence vector spaces -- 3.1 Convergence groups -- 3.2 Generalities on convergence vector spaces -- 3.3 Initial and final vector space convergence structures -- 3.4 Projective and inductive limits of convergence vector spaces -- 3.5 The locally convex topological modification -- 3.6 Countability axioms for convergence vector spaces -- 3.7 Boundedness -- 3.8 Notes on bornological vector spaces -- 4 Duality --4.1 The dual of a convergence vector space -- 4.2 Reflexivity -- 4.3 The dual of a locally convex topological vector space -- 4.4 An application of continuous duality -- 4.5 Notes -- 5 Hahn-Banach extension theorems --5.1 General results -- 5.2 Hahn-Banach spaces -- 5.3 Extending to the adherence -- 5.4 Strong Hahn-Banach spaces -- 5.5 An application to partial differential equations -- 5.6 Notes -- 6 The closed graph theorem --6.1 Ultracompleteness -- 6.2 The main theorems -- 6.3 An application to web spaces --7 The Banach-Steinhaus theorem --7.1 Equicontinuous sets -- 7.2 Banach-Steinhaus pairs -- 7.3 The continuity of bilinear mappings -- 8 Duality theory for convergence groups -- 8.1 Reflexivity -- 8.2 Duality for convergence vector spaces -- 8.3 Subgroups and quotient groups -- 8.4 Topological groups -- 8.5 Groups of unimodular continuous functions -- 8.6 c- and co-duality for topological groups.".
- 2002071086 title "Convergence structures and applications to functional analysis / by R. Beattie and H.-P. Butzmann.".
- 2002071086 type "text".