Matches in Library of Congress for { <http://lccn.loc.gov/2010010530> ?p ?o. }
Showing items 1 to 22 of
22
with 100 items per page.
- 2010010530 contributor B11749192.
- 2010010530 created "c2010.".
- 2010010530 date "2010".
- 2010010530 date "c2010.".
- 2010010530 dateCopyrighted "c2010.".
- 2010010530 description "1. Introduction -- 1.1. Background -- 1.1.1. Renewable Energy -- 1.1.2. Fossil Energy Outlook -- 1.2. Coal Combustion -- 1.2.1. Energy Conversion Efficiency Improvement -- 1.2.2. Flue Gas Pollutant Control Methods -- 1.3. CO2 Capture -- 1.4. CO2 Sequestration -- 1.5. Coal Gasification -- 1.6. Chemical Looping Concepts -- 1.7. Chemical Looping Processes -- 1.8. Overview of This Book -- References -- 2. Chemical Looping Particles -- 2.1. Introduction -- 2.2. Type I Chemical Looping System -- 2.2.1. General Particle Characteristics -- 2.2.2. Thermodynamics and Phase Equilibrium of Metals and Metal Oxides -- 2.2.3. Particle Regeneration with Steam -- 2.2.4. Reaction with Oxygen and Heat of Reaction -- 2.2.5. Particle Design Considering Heat of Reaction -- 2.2.6. Particle Preparation and Recyclability -- 2.2.7. Particle Formulation and Effect of Support -- 2.2.8. Effect of Particle Size and Mechanical Strength -- 2.2.9. Carbon and Sulfur Formation Resistance -- 2.2.10. Particle Reaction Mechanism -- 2.2.11. Effect of Reactor Design and Gas-Solid Contact Modes -- 2.2.12. Selection of Primary Metal for Chemical Looping Combustion of Coal -- 2.3. Type II Chemical Looping System -- 2.3.1. Types of Metal Oxide -- 2.3.2. Thermodynamics and Phase Equilibrium of Metal Oxide and Metal Carbonate -- 2.3.3. Reaction Characteristics of Ca-Based Sorbents for CO2 Capture -- 2.3.4. Synthesis of the High-Reactivity PCC-CaO Sorbent -- 2.3.5. Reactivity of Calcium Sorbents -- 2.3.6. Recyclability of Calcium Oxides -- 2.4. Concluding Remarks -- References -- 3. Chemical Looping Combustion -- 3.1. Introduction -- 3.2. CO2 Capture Strategies for Fossil Fuel Combustion Power Plants -- 3.2.1. Pulverized Coal Combustion Power Plants -- 3.2.2. CO2 Capture Strategies -- 3.3. Chemical Looping Combustion -- 3.3.1. Particle Reactive Properties and Their Relationship with CLC Operation -- 3.3.2. Key Design and Operational Parameters for a CFB-Based CLC System -- 3.3.3. CLC Reactor System Design -- 3.3.4. Gaseous Fuel CLC Systems and Operational Results -- 3.3.5. Solid Fuel CLC Systems and Operational Results -- 3.4. Concluding Remarks -- References -- 4. Chemical Looping Gasification Using Gaseous Fuels -- 4.1. Introduction -- 4.2. Traditional Coal Gasification Processes -- 4.2.1. Electricity Production---Integrated Gasification Combined Cycle (IGCC) -- 4.2.2. H2 Production -- 4.2.3. Liquid Fuel Production -- 4.3. Iron-Based Chemical Looping Processes Using Gaseous Fuels -- 4.3.1. Lane Process and Messerschmitt Process -- 4.3.2. U.S. Bureau of Mines Pressurized Fluidized Bed Steam-Iron Process -- 4.3.3. Institute of Gas Technology Process -- 4.3.4. Syngas Chemical Looping (SCL) Process -- 4.4. Design, Analysis and Optimization of the Syngas Chemical Looping (SCL) Process -- 4.4.1. Thermodynamic Analyses of SCL Reactor Behavior -- 4.4.2. ASPEN PLUS Simulation of SCL Reactor Systems -- 4.4.3. Syngas Chemical Looping (SCL) Process Testing -- 4.5. Process Simulation of the Traditional Gasification Process and the Syngas Chemical Looping Process -- 4.5.1. Common Assumptions and Model Setup -- 4.5.2. Description of Various Systems -- 4.5.3. ASPEN PLUS Simulation, Results, and Analyses -- 4.6. Example of SCL Applications---A Coal-to-Liquid Configuration -- 4.6.1. Process Overview -- 4.6.2. Mass/Energy Balance and Process Evaluation -- 4.7. Calcium Looping Process Using Gaseous Fuels -- 4.7.1. Description of the Processes -- 4.7.2. Reaction Characteristics of the Processes -- 4.7.3. Analyses of the Processes -- 4.7.4. Enhanced Coal-to-Liquid (CTL) Process with Sulfur and CO2 Capture -- 4.8. Concluding Remarks -- References -- 5. Chemical Looping Gasification Using Solid Fuels -- 5.1. Introduction -- 5.2. Chemical Looping Gasification Processes Using Calcium-Based Sorbent -- 5.2.1. CO2 Acceptor Process -- 5.2.2. HyPr-Ring Process -- 5.2.3. Zero Emission Coal Alliance Process -- 5.2.4. ALSTOM Hybrid Combustion-Gasification Process -- 5.2.5. Fuel-Flexible Advanced Gasification-Combustion Process -- 5.2.6. General Comments -- 5.3. Coal-Direct Chemical Looping (CDCL) Processes Using Iron-Based Oxygen Carriers -- 5.3.1. Coal-Direct Chemical Looping Process---Configuration I -- 5.3.2. Coal-Direct Chemical Looping Process---Configuration II -- 5.3.3. Comments on the Iron-Based Coal-Direct Chemical Looping Process -- 5.4. Challenges to the Coal-Direct Chemical Looping Processes and Strategy for Improvements -- 5.4.1. Oxygen-Carrier Particle Reactivity and Char Reaction Enhancement -- 5.4.2. Configurations and Conversions of the Reducer -- 5.4.3. Performance of the Oxidizer and the Combustor -- 5.4.4. Fate of Pollutants and Ash -- 5.4.5. Energy Management, Heat Integration, and General Comments -- 5.5. Process Simulation on the Coal-Direct Chemical Looping Process -- 5.5.1. ASPEN Model Setup -- 5.5.2. Simulation Results -- 5.6. Concluding Remarks -- References -- 6. Novel Applications of Chemical Looping Technologies -- 6.1. Introduction -- 6.2. Hydrogen Storage and Onboard Hydrogen Production -- 6.2.1. Compressed Hydrogen Gas and Liquefied Hydrogen -- 6.2.2. Metal Hydrides -- 6.2.3. Bridged Metal-Organic Frameworks -- 6.2.4. Carbon Nanotubes and Graphite Nanofibers -- 6.2.5. Onboard Hydrogen Production via Iron Based Materials -- 6.3. Carbonation-Calcination Reaction (CCR) Process for Carbon Dioxide Capture -- 6.4. Chemical Looping Gasification Integrated with Fuel Cells -- 6.4.1. Chemical Looping Gasification Integrated with Solid-Oxide Fuel Cells -- 6.4.2. Direct Solid Fuel Cells -- 6.5. Enhanced Steam Methane Reforming -- 6.6. Tar Sand Digestion via Steam Generation -- 6.7. Liquid Fuel Production from Chemical Looping Gasification -- 6.8. Chemical Looping with Oxygen Uncoupling (CLOU) -- 6.9. Concluding Remarks -- References.".
- 2010010530 description "Includes bibliographical references and indexes.".
- 2010010530 extent "xiv, 420 p. :".
- 2010010530 identifier "0470872527 (hardback)".
- 2010010530 identifier "9780470872529 (hardback)".
- 2010010530 issued "2010".
- 2010010530 issued "c2010.".
- 2010010530 language "eng".
- 2010010530 publisher "Hoboken, NJ : Wiley-AIChE,".
- 2010010530 subject "621.402/3 22".
- 2010010530 subject "Energy conversion.".
- 2010010530 subject "Fluidized-bed combustion.".
- 2010010530 subject "Fossil fuels Combustion.".
- 2010010530 subject "TP156.F65 F348 2010".
- 2010010530 tableOfContents "1. Introduction -- 1.1. Background -- 1.1.1. Renewable Energy -- 1.1.2. Fossil Energy Outlook -- 1.2. Coal Combustion -- 1.2.1. Energy Conversion Efficiency Improvement -- 1.2.2. Flue Gas Pollutant Control Methods -- 1.3. CO2 Capture -- 1.4. CO2 Sequestration -- 1.5. Coal Gasification -- 1.6. Chemical Looping Concepts -- 1.7. Chemical Looping Processes -- 1.8. Overview of This Book -- References -- 2. Chemical Looping Particles -- 2.1. Introduction -- 2.2. Type I Chemical Looping System -- 2.2.1. General Particle Characteristics -- 2.2.2. Thermodynamics and Phase Equilibrium of Metals and Metal Oxides -- 2.2.3. Particle Regeneration with Steam -- 2.2.4. Reaction with Oxygen and Heat of Reaction -- 2.2.5. Particle Design Considering Heat of Reaction -- 2.2.6. Particle Preparation and Recyclability -- 2.2.7. Particle Formulation and Effect of Support -- 2.2.8. Effect of Particle Size and Mechanical Strength -- 2.2.9. Carbon and Sulfur Formation Resistance -- 2.2.10. Particle Reaction Mechanism -- 2.2.11. Effect of Reactor Design and Gas-Solid Contact Modes -- 2.2.12. Selection of Primary Metal for Chemical Looping Combustion of Coal -- 2.3. Type II Chemical Looping System -- 2.3.1. Types of Metal Oxide -- 2.3.2. Thermodynamics and Phase Equilibrium of Metal Oxide and Metal Carbonate -- 2.3.3. Reaction Characteristics of Ca-Based Sorbents for CO2 Capture -- 2.3.4. Synthesis of the High-Reactivity PCC-CaO Sorbent -- 2.3.5. Reactivity of Calcium Sorbents -- 2.3.6. Recyclability of Calcium Oxides -- 2.4. Concluding Remarks -- References -- 3. Chemical Looping Combustion -- 3.1. Introduction -- 3.2. CO2 Capture Strategies for Fossil Fuel Combustion Power Plants -- 3.2.1. Pulverized Coal Combustion Power Plants -- 3.2.2. CO2 Capture Strategies -- 3.3. Chemical Looping Combustion -- 3.3.1. Particle Reactive Properties and Their Relationship with CLC Operation -- 3.3.2. Key Design and Operational Parameters for a CFB-Based CLC System -- 3.3.3. CLC Reactor System Design -- 3.3.4. Gaseous Fuel CLC Systems and Operational Results -- 3.3.5. Solid Fuel CLC Systems and Operational Results -- 3.4. Concluding Remarks -- References -- 4. Chemical Looping Gasification Using Gaseous Fuels -- 4.1. Introduction -- 4.2. Traditional Coal Gasification Processes -- 4.2.1. Electricity Production---Integrated Gasification Combined Cycle (IGCC) -- 4.2.2. H2 Production -- 4.2.3. Liquid Fuel Production -- 4.3. Iron-Based Chemical Looping Processes Using Gaseous Fuels -- 4.3.1. Lane Process and Messerschmitt Process -- 4.3.2. U.S. Bureau of Mines Pressurized Fluidized Bed Steam-Iron Process -- 4.3.3. Institute of Gas Technology Process -- 4.3.4. Syngas Chemical Looping (SCL) Process -- 4.4. Design, Analysis and Optimization of the Syngas Chemical Looping (SCL) Process -- 4.4.1. Thermodynamic Analyses of SCL Reactor Behavior -- 4.4.2. ASPEN PLUS Simulation of SCL Reactor Systems -- 4.4.3. Syngas Chemical Looping (SCL) Process Testing -- 4.5. Process Simulation of the Traditional Gasification Process and the Syngas Chemical Looping Process -- 4.5.1. Common Assumptions and Model Setup -- 4.5.2. Description of Various Systems -- 4.5.3. ASPEN PLUS Simulation, Results, and Analyses -- 4.6. Example of SCL Applications---A Coal-to-Liquid Configuration -- 4.6.1. Process Overview -- 4.6.2. Mass/Energy Balance and Process Evaluation -- 4.7. Calcium Looping Process Using Gaseous Fuels -- 4.7.1. Description of the Processes -- 4.7.2. Reaction Characteristics of the Processes -- 4.7.3. Analyses of the Processes -- 4.7.4. Enhanced Coal-to-Liquid (CTL) Process with Sulfur and CO2 Capture -- 4.8. Concluding Remarks -- References -- 5. Chemical Looping Gasification Using Solid Fuels -- 5.1. Introduction -- 5.2. Chemical Looping Gasification Processes Using Calcium-Based Sorbent -- 5.2.1. CO2 Acceptor Process -- 5.2.2. HyPr-Ring Process -- 5.2.3. Zero Emission Coal Alliance Process -- 5.2.4. ALSTOM Hybrid Combustion-Gasification Process -- 5.2.5. Fuel-Flexible Advanced Gasification-Combustion Process -- 5.2.6. General Comments -- 5.3. Coal-Direct Chemical Looping (CDCL) Processes Using Iron-Based Oxygen Carriers -- 5.3.1. Coal-Direct Chemical Looping Process---Configuration I -- 5.3.2. Coal-Direct Chemical Looping Process---Configuration II -- 5.3.3. Comments on the Iron-Based Coal-Direct Chemical Looping Process -- 5.4. Challenges to the Coal-Direct Chemical Looping Processes and Strategy for Improvements -- 5.4.1. Oxygen-Carrier Particle Reactivity and Char Reaction Enhancement -- 5.4.2. Configurations and Conversions of the Reducer -- 5.4.3. Performance of the Oxidizer and the Combustor -- 5.4.4. Fate of Pollutants and Ash -- 5.4.5. Energy Management, Heat Integration, and General Comments -- 5.5. Process Simulation on the Coal-Direct Chemical Looping Process -- 5.5.1. ASPEN Model Setup -- 5.5.2. Simulation Results -- 5.6. Concluding Remarks -- References -- 6. Novel Applications of Chemical Looping Technologies -- 6.1. Introduction -- 6.2. Hydrogen Storage and Onboard Hydrogen Production -- 6.2.1. Compressed Hydrogen Gas and Liquefied Hydrogen -- 6.2.2. Metal Hydrides -- 6.2.3. Bridged Metal-Organic Frameworks -- 6.2.4. Carbon Nanotubes and Graphite Nanofibers -- 6.2.5. Onboard Hydrogen Production via Iron Based Materials -- 6.3. Carbonation-Calcination Reaction (CCR) Process for Carbon Dioxide Capture -- 6.4. Chemical Looping Gasification Integrated with Fuel Cells -- 6.4.1. Chemical Looping Gasification Integrated with Solid-Oxide Fuel Cells -- 6.4.2. Direct Solid Fuel Cells -- 6.5. Enhanced Steam Methane Reforming -- 6.6. Tar Sand Digestion via Steam Generation -- 6.7. Liquid Fuel Production from Chemical Looping Gasification -- 6.8. Chemical Looping with Oxygen Uncoupling (CLOU) -- 6.9. Concluding Remarks -- References.".
- 2010010530 title "Chemical looping systems for fossil energy conversions / Liang-Shih Fan.".
- 2010010530 type "text".