Matches in Library of Congress for { <http://lccn.loc.gov/2010025111> ?p ?o. }
Showing items 1 to 22 of
22
with 100 items per page.
- 2010025111 contributor B11766681.
- 2010025111 contributor B11766682.
- 2010025111 created "2010.".
- 2010025111 date "2010".
- 2010025111 date "2010.".
- 2010025111 dateCopyrighted "2010.".
- 2010025111 description "Includes bibliographical references (p. 504) and index.".
- 2010025111 description "Machine generated contents note: Preface -- 1 Understanding the physical universe -- 1.1 The programme of physics -- 1.2 The building blocks of matter -- 1.3 Matter in bulk -- 1.4 The fundamental interactions -- 1.5 Exploring the physical universe: the scientific method -- 1.6 The role of physics: its scope and applications -- 2 Using mathematical tools in physics -- 2.1 Applying the scientific method -- 2.2 The use of variables to represent displacement and time -- 2.3 Representation of data -- 2.4 The use of differentiation in analysis: velocity and acceleration in linear motion -- 2.5 The use of integration in analysis -- 2.6 Maximum and minimum values of physical variables: general linear motion -- 2.7 Angular motion: the radian -- 2.8 The role of mathematics in physics -- Worked examples -- Problems -- 3 The causes of motion: dynamics -- 3.1 The concept of force -- 3.2 The first law of dynamics (Newton's first law) -- 3.3 The fundamental dynamical principle (Newton's second law) -- 3.4 Systems of units: SI -- 3.5 Time dependent forces: oscillatory motion -- 3.6 Simple harmonic motion -- 3.7 Mechanical work and energy: power -- 3.8 Energy in simple harmonic motion -- 3.9 Dissipative forces: damped harmonic motion -- 3.10 Forced oscillations -- 3.11 Nonlinear dynamics: chaos -- Worked examples -- Problems -- 4 Motion in two and three dimensions -- 4.1 Vector physical quantities -- 4.2 Vector algebra -- 4.3 Velocity and acceleration vectors -- 4.4 Force as a vector quantity: vector form of the laws of dynamics -- 4.5 Constraint forces -- 4.6 Friction -- 4.7 Motion in a circle: centripetal force -- 4.8 Motion in a circle at constant speed -- 4.9 Tangential and radial components of acceleration -- 4.10 Hybrid motion: the simple pendulum -- 4.11 Angular quantities as vectors: the cross product -- Worked examples -- Problems -- 5 Force fields -- 5.1 Newton's law of universal gravitation -- 5.2 Force fields -- 5.3 The concept of flux -- 5.4 Gauss' law for gravitation -- 5.5 Motion in a constant uniform field: projectiles -- 5.6 Mechanical work and energy -- 5.7 Energy in a constant uniform field -- 5.8 Energy in an inverse square law field -- 5.9 Moment of a force: angular momentum -- 5.10 Planetary motion: circular orbits -- 5.11 Planetary motion: elliptical orbits and Kepler's laws -- Worked examples -- Problems -- 6 Many-body interactions -- 6.1 Newton's third law -- 6.2 The principle of conservation of momentum -- 6.3 Mechanical energy of a system of particles -- 6.4 Particle decay -- 6.5 Particle collisions -- 6.6 The centre of mass of a system -- 6.7 The two-body problem: reduced mass -- 6.8 Angular momentum of a system of particles -- 6.9 Conservation principles in physics -- Worked examples -- Problems -- 7 Rigid body dynamics -- 7.1 Rigid bodies -- 7.2 Rigid bodies in equilibrium: statics -- 7.3 Torque -- 7.4 Dynamics of rigid bodies -- 7.5 Measurement of torque: the torsion balance -- 7.6 Rotation of a rigid body about a fixed axis: moment of inertia -- 7.7 Calculation of moments of inertia: the parallel axis theorem -- 7.8 Conservation of angular momentum of rigid bodies -- 7.9 Conservation of mechanical energy in rigid body systems -- 7.10 Work done by a torque: torsional oscillations: rotational power -- 7.11 Gyroscopic motion -- 7.12 Summary: connection between rotational and translational motions -- Worked examples -- Problems -- 8 Relative motion -- 8.1 Applicability of Newton's laws of motion: inertial reference frames -- 8.2 The Galilean transformation -- 8.3 The CM (centre-of-mass) reference frame -- 8.4 Example of a noninertial frame: centrifugal force -- 8.5 Motion in a rotating frame: the Coriolis force -- 8.6 The Foucault pendulum -- 8.7 Practical criteria for inertial frames: the local view -- Worked examples -- Problems -- 9 Special relativity -- 9.1 The velocity of light -- 9.2 The principle of relativity -- 9.3 Consequences of the principle of relativity -- 9.4 The Lorentz transformation -- 9.5 The Fitzgerald-Lorentz contraction -- 9.6 Time dilation -- 9.7 Paradoxes in special relativity -- 9.8 Relativistic transformation of velocity -- 9.9 Momentum in relativistic mechanics -- 9.10 Four-vectors: the energy-momentum 4-vector -- 9.11 Energy-momentum transformations: relativistic energy conservation".
- 2010025111 extent "xvii, 675 p. :".
- 2010025111 identifier "9780470746370 (pbk.)".
- 2010025111 identifier "9780470746387 (hbk.)".
- 2010025111 identifier 9780470746387.jpg.
- 2010025111 issued "2010".
- 2010025111 issued "2010.".
- 2010025111 language "eng".
- 2010025111 publisher "Hoboken, N.J. : Wiley,".
- 2010025111 subject "530 22".
- 2010025111 subject "Physics.".
- 2010025111 subject "QC23 .M287 2010".
- 2010025111 tableOfContents "Machine generated contents note: Preface -- 1 Understanding the physical universe -- 1.1 The programme of physics -- 1.2 The building blocks of matter -- 1.3 Matter in bulk -- 1.4 The fundamental interactions -- 1.5 Exploring the physical universe: the scientific method -- 1.6 The role of physics: its scope and applications -- 2 Using mathematical tools in physics -- 2.1 Applying the scientific method -- 2.2 The use of variables to represent displacement and time -- 2.3 Representation of data -- 2.4 The use of differentiation in analysis: velocity and acceleration in linear motion -- 2.5 The use of integration in analysis -- 2.6 Maximum and minimum values of physical variables: general linear motion -- 2.7 Angular motion: the radian -- 2.8 The role of mathematics in physics -- Worked examples -- Problems -- 3 The causes of motion: dynamics -- 3.1 The concept of force -- 3.2 The first law of dynamics (Newton's first law) -- 3.3 The fundamental dynamical principle (Newton's second law) -- 3.4 Systems of units: SI -- 3.5 Time dependent forces: oscillatory motion -- 3.6 Simple harmonic motion -- 3.7 Mechanical work and energy: power -- 3.8 Energy in simple harmonic motion -- 3.9 Dissipative forces: damped harmonic motion -- 3.10 Forced oscillations -- 3.11 Nonlinear dynamics: chaos -- Worked examples -- Problems -- 4 Motion in two and three dimensions -- 4.1 Vector physical quantities -- 4.2 Vector algebra -- 4.3 Velocity and acceleration vectors -- 4.4 Force as a vector quantity: vector form of the laws of dynamics -- 4.5 Constraint forces -- 4.6 Friction -- 4.7 Motion in a circle: centripetal force -- 4.8 Motion in a circle at constant speed -- 4.9 Tangential and radial components of acceleration -- 4.10 Hybrid motion: the simple pendulum -- 4.11 Angular quantities as vectors: the cross product -- Worked examples -- Problems -- 5 Force fields -- 5.1 Newton's law of universal gravitation -- 5.2 Force fields -- 5.3 The concept of flux -- 5.4 Gauss' law for gravitation -- 5.5 Motion in a constant uniform field: projectiles -- 5.6 Mechanical work and energy -- 5.7 Energy in a constant uniform field -- 5.8 Energy in an inverse square law field -- 5.9 Moment of a force: angular momentum -- 5.10 Planetary motion: circular orbits -- 5.11 Planetary motion: elliptical orbits and Kepler's laws -- Worked examples -- Problems -- 6 Many-body interactions -- 6.1 Newton's third law -- 6.2 The principle of conservation of momentum -- 6.3 Mechanical energy of a system of particles -- 6.4 Particle decay -- 6.5 Particle collisions -- 6.6 The centre of mass of a system -- 6.7 The two-body problem: reduced mass -- 6.8 Angular momentum of a system of particles -- 6.9 Conservation principles in physics -- Worked examples -- Problems -- 7 Rigid body dynamics -- 7.1 Rigid bodies -- 7.2 Rigid bodies in equilibrium: statics -- 7.3 Torque -- 7.4 Dynamics of rigid bodies -- 7.5 Measurement of torque: the torsion balance -- 7.6 Rotation of a rigid body about a fixed axis: moment of inertia -- 7.7 Calculation of moments of inertia: the parallel axis theorem -- 7.8 Conservation of angular momentum of rigid bodies -- 7.9 Conservation of mechanical energy in rigid body systems -- 7.10 Work done by a torque: torsional oscillations: rotational power -- 7.11 Gyroscopic motion -- 7.12 Summary: connection between rotational and translational motions -- Worked examples -- Problems -- 8 Relative motion -- 8.1 Applicability of Newton's laws of motion: inertial reference frames -- 8.2 The Galilean transformation -- 8.3 The CM (centre-of-mass) reference frame -- 8.4 Example of a noninertial frame: centrifugal force -- 8.5 Motion in a rotating frame: the Coriolis force -- 8.6 The Foucault pendulum -- 8.7 Practical criteria for inertial frames: the local view -- Worked examples -- Problems -- 9 Special relativity -- 9.1 The velocity of light -- 9.2 The principle of relativity -- 9.3 Consequences of the principle of relativity -- 9.4 The Lorentz transformation -- 9.5 The Fitzgerald-Lorentz contraction -- 9.6 Time dilation -- 9.7 Paradoxes in special relativity -- 9.8 Relativistic transformation of velocity -- 9.9 Momentum in relativistic mechanics -- 9.10 Four-vectors: the energy-momentum 4-vector -- 9.11 Energy-momentum transformations: relativistic energy conservation".
- 2010025111 title "Understanding physics / Michael Mansfield and Colm O'Sullivan.".
- 2010025111 type "text".