Matches in Library of Congress for { <http://lccn.loc.gov/2010028565> ?p ?o. }
Showing items 1 to 21 of
21
with 100 items per page.
- 2010028565 contributor B11770815.
- 2010028565 contributor B11770816.
- 2010028565 created "2010.".
- 2010028565 date "2010".
- 2010028565 date "2010.".
- 2010028565 dateCopyrighted "2010.".
- 2010028565 description "Includes bibliographical references and index.".
- 2010028565 description "Machine generated contents note: About the Authors. -- Preface to the Third Edition. -- Nomenclature. -- Dimensions and Units. -- PART 1 FUNDAMENTAL CONCEPTS. -- 1. Separation Processes. -- 1.0 Instructional Objectives. -- 1.1 Industrial Chemical Processes. -- 1.2 Basic Separation Techniques. -- 1.3 Separations by Phase Addition or Creation. -- 1.4 Separations by Barriers. -- 1.5 Separations by Solid Agents. -- 1.6 Separations by External Field or Gradient. -- 1.7 Component Recoveries and Product Purities. -- 1.8 Separation Factor. -- 1.9 Introduction to Bioseparations. -- 1.10 Selection of Feasible Separations. -- Summary References Study Questions Exercises. -- 2. Thermodynamics of Separation Operations. -- 2.0 Instructional Objectives. -- 2.1 Energy, Entropy, and Availability Balances. -- 2.2 Phase Equilibria. -- 2.3 Ideal-Gas, Ideal-Liquid-Solution Model. -- 2.4 Graphical Correlations of Thermodynamic Properties. -- 2.5 Nonideal Thermodynamic Property Models. -- 2.6 Liquid Activity-Coefficient Models. -- 2.7 Difficult Mixtures. -- 2.8 Selecting an Appropriate Model. -- 2.9 Thermodynamic Activity of Biological Species. -- Summary References Study Questions Exercises. -- 3. Mass Transfer and Diffusion. -- 3.0 Instructional Objectives. -- 3.1 Steady-State, Ordinary Molecular Diffusion. -- 3.2 Diffusion Coefficients (Diffusivities). -- 3.3 Steady- and Unsteady-State Mass Transfer Through Stationary Media. -- 3.4 Mass Transfer in Laminar Flow. -- 3.5 Mass Transfer in Turbulent Flow. -- 3.6 Models for Mass Transfer in Fluids with a Fluid-Fluid Interface. -- 3.7 Two-Film Theory and Overall Mass-Transfer Coefficients. -- 3.8 Molecular Mass Transfer in Terms of Other Driving Forces. -- Summary References Study Questions Exercises. -- 4. Single Equilibrium Stages and Flash Calculations. -- 4.0 Instructional Objectives. -- 4.1 Gibbs Phase Rule and Degrees of Freedom. -- 4.2 Binary Vapor-Liquid Systems. -- 4.3 Binary Azeotropic Systems. -- 4.4 Multicomponent Flash, Bubble-Point, and Dew-Point Calculations. -- 4.5 Ternary Liquid-Liquid Systems. -- 4.6 Multicomponent Liquid-Liquid Systems. -- 4.7 Solid-Liquid Systems. -- 4.8 Gas-Liquid Systems. -- 4.9 Gas-Solid Systems. -- 4.10 Multiphase Systems. -- Summary References Study Questions Exercises. -- 5. Cascades and Hybrid Systems. -- 5.0 Instructional Objectives. -- 5.1 Cascade Configurations. -- 5.2 Solid-Liquid Cascades. -- 5.3 Single-Section Extraction Cascades. -- 5.4 Multicomponent Vapor-Liquid Cascades. -- 5.5 Membrane Cascades. -- 5.6 Hybrid Systems. -- 5.7 Degrees of Freedom and Specifications for Cascades. -- Summary References Study Questions Exercises. -- PART 2 SEPARATIONS BY PHASE ADDITION OR CREATION. -- 6. Absorption and Stripping of Dilute Mixtures. -- 6.0 Instructional Objectives. -- 6.1 Equipment for Vapor-Liquid Separations. -- 6.2 General Design Considerations. -- 6.3 Graphical Method for Trayed Towers. -- 6.4 Algebraic Method for Determining N. -- 6.5 Stage Efficiency and Column Height for Trayed Columns. -- 6.6 Flooding, Column Diameter, Pressure Drop, and Mass Transfer for Trayed Columns. -- 6.7 Rate-Based Method for Packed Columns. -- 6.8 Packed-Column Liquid Holdup, Diameter, Flooding, Pressure Drop, and Mass-Transfer -- Efficiency. -- 6.9 Concentrated Solutions in Packed Columns. -- Summary References Study Questions Exercises. -- 7. Distillation of Binary Mixtures. -- 7.0 Instructional Objectives. -- 7.1 Equipment and Design Considerations. -- 7.2 McCabe-Thiele Graphical Method for Trayed Towers. -- 7.3 Extensions of the McCabe-Thiele Method. -- 7.4 Estimation of Stage Efficiency for Distillation. -- 7.5 Column and Reflux-Drum Diameters. -- 7.6 Rate-Based Method for Packed Distillation Columns. -- 7.7 Introduction to the Ponchon-Savarit Graphical Equilibrium-Stage Method for Trayed -- Towers. -- Summary References Study Questions Exercises. -- 8. Liquid-Liquid Extraction with Ternary Systems. -- 8.0 Instructional Objectives. -- 8.1 Equipment for Solvent Extraction. -- 8.2 General Design Considerations. -- 8.3 Hunter-Nash Graphical Equilibrium-Stage Method. -- 8.4 Maloney-Schubert Graphical Equilibrium-Stage Method. -- 8.5 Theory and Scale-up of Extractor Performance. -- 8.6 Extraction of Bioproducts. -- Summary References Study Questions Exercises. -- 9. Approximate Methods for Multicomponent, Multistage Separations. -- 9.0 Instructional Objectives. -- 9.1 Fenske-Underwood-Gilliland (FUG) Method. -- 9.2 Kremser Group Method. -- Summary References Study Questions Exercises. -- 10. Equilibrium-Based Methods for Multicomponent Absorption, Stripping, -- Distillation, and Extraction. -- 10.0 Instructional Objectives. -- 10.1 Theoretical Model for an Equilibrium Stage. -- 10.2 Strategy of Mathematical Solution. -- 10.3 Equation-Tearing Procedures. -- 10.4 Newton-Raphson (NR) Method. -- 10.5 Inside-Out Method. -- Summary References Study Questions Exercises. -- 11. Enhanced Distillation and Supercritical Extraction. -- 11.0 Instructional Objectives. -- 11.1 Use of Triangular Graphs. -- 11.2 Extractive Distillation. -- 11.3 Salt Distillation. -- 11.4 Pressure-Swing Distillation. -- 11.5 Homogeneous Azeotropic Distillation. -- 11.6 Heterogeneous Azeotropic Distillation. -- 11.7 Reactive Distillation. -- 11.8 Supercritical-Fluid Extraction. -- Summary References Study Questions Exercises. -- 12. Rate-Based Models for Vapor-Liquid Separation Operations. -- 12.0 Instructional Objectives. -- 12.1 Rate-Based Model. -- 12.2 Thermodynamic Properties and Transport-Rate Expressions. -- 12.3 Methods for Estimating Transport Coefficients and Interfacial Area. -- 12.4 Vapor and Liquid Flow Patterns. -- 12.5 Method of Calculation. -- Summary References Study Questions Exercises. -- 13. Batch Distillation. -- 13.0 Instructional Objectives. -- 13.1 Differential Distillation. -- 13.2 Binary Batch Rectification. -- 13.3 Batch Stripping and Complex Batch Distillation. -- 13.4 Effect of Liquid Holdup. -- 13.5 Shortcut Method for Batch Rectification. -- 13.6 Stage-by-Stage Methods for Batch Rectification. -- 13.7 Intermediate-cut Strategy. -- 13.8 Optimal Control by Variation of Reflux Ratio. -- Summary References Study Questions Exercises. -- PART 3 SEPARATIONS BY BARRIERS AND SOLID AGENTS. -- 14. Membrane Separations. -- 14.0 Instructional Objectives. -- 14.1 Membrane Materials. -- 14.2 Membrane Modules. -- 14.3 Transport in Membranes. -- 14.4 Dialysis. -- 14.5 Electrodialysis. -- 14.6 Reverse Osmosis. -- 14.7 Gas Permeation. -- 14.8 Pervaporation. -- 14.9 Membranes in Bioprocessing. -- Summary References Study Questions Exercises. -- 15. Adsorption, Ion Exchange, Chromatography, and Electrophoresis. -- 15.0 Instructional Objectives. -- 15.1 Sorbents. -- 15.2 Equilibrium Considerations. -- 15.3_ Kinetic and Transport Considerations. -- 15.4 Equipment for Sorption Systems. -- 15.5_ Slurry and Fixed-Bed Adsorption Systems. -- 15.6 Continuous, Countercurrent Adsorption Systems. -- 15.7 Ion-Exchange Cycle. -- 15.8 Electrophoresis. -- Summary References Study Questions Exercises. -- PART 4 SEPARATIONS THAT INVOLVE A SOLID PHASE. -- 16. Leaching and Washing. -- 16.0 Instructional Objectives. -- 16.1 Equipment for Leaching. -- 16.2 Equilibrium-Stage Model for Leaching and Washing. -- 16.3 Rate-Based Model for Leaching. -- Summary References Study Questions Exercises. -- 17. Crystallization, Desublimation, and Evaporation. -- 17.0 Instructional Objectives. -- 17.1 Crystal Geometry. -- 17.2 Thermodynamic Considerations. -- 17.3 Kinetics and Mass Transfer. -- 17.4 Equipment for Solution Crystallization. -- 17.5 The MSMPR Crystallization Model. -- 17.6 Precipitation. -- 17.7 Melt Crystallization. -- 17.8 Zone Melting. -- 17.9 Desublimation. -- 17.10 Evaporation. -- 17.11 Bioproduct Crystallization. -- Summary References Study Questions Exercises -- 18. Drying of Solids. -- 18.0_ Instructional Objectives. -- 18.1 Drying Equipment. -- 18.2 Psychrometry. -- 18.3 Equilibrium-Moisture Content of Solids. -- 18.4 Drying Periods. -- 18.5 Dryer Models. -- 18.6 Drying of Bioproducts. -- Summary References Study Questions Exercises. -- PART 5 MECHANICAL SEPARATION OF PHASES. -- 19. Mechanical Phase Separations. -- 19.0 Instructional Objectives. -- 19.1 Separation-Device Selection. -- 19.2 Industrial Particle-Separator Devices. -- 19.3 Design of Particle Separators. -- 19.4 Design of Solid-Liquid Cake-Filtration Devices Based on Pressure Gradients. -- 19.5 Centrifuge Devices for Solid-Liquid Separations. -- 19.6 Wash Cycles. -- 19.7 Mechanical Separations in Biotechnology. -- Summary References Study Questions Exercises. -- Answers to Selected Exercises. -- Index.".
- 2010028565 extent "p. cm.".
- 2010028565 identifier "9780470481837 (hardback)".
- 2010028565 identifier 9780470481837.jpg.
- 2010028565 issued "2010".
- 2010028565 issued "2010.".
- 2010028565 language "eng".
- 2010028565 publisher "Hoboken, NJ : Wiley,".
- 2010028565 subject "660/.2842 22".
- 2010028565 subject "Separation (Technology) Textbooks.".
- 2010028565 subject "TP156.S45 S364 2010".
- 2010028565 tableOfContents "Machine generated contents note: About the Authors. -- Preface to the Third Edition. -- Nomenclature. -- Dimensions and Units. -- PART 1 FUNDAMENTAL CONCEPTS. -- 1. Separation Processes. -- 1.0 Instructional Objectives. -- 1.1 Industrial Chemical Processes. -- 1.2 Basic Separation Techniques. -- 1.3 Separations by Phase Addition or Creation. -- 1.4 Separations by Barriers. -- 1.5 Separations by Solid Agents. -- 1.6 Separations by External Field or Gradient. -- 1.7 Component Recoveries and Product Purities. -- 1.8 Separation Factor. -- 1.9 Introduction to Bioseparations. -- 1.10 Selection of Feasible Separations. -- Summary References Study Questions Exercises. -- 2. Thermodynamics of Separation Operations. -- 2.0 Instructional Objectives. -- 2.1 Energy, Entropy, and Availability Balances. -- 2.2 Phase Equilibria. -- 2.3 Ideal-Gas, Ideal-Liquid-Solution Model. -- 2.4 Graphical Correlations of Thermodynamic Properties. -- 2.5 Nonideal Thermodynamic Property Models. -- 2.6 Liquid Activity-Coefficient Models. -- 2.7 Difficult Mixtures. -- 2.8 Selecting an Appropriate Model. -- 2.9 Thermodynamic Activity of Biological Species. -- Summary References Study Questions Exercises. -- 3. Mass Transfer and Diffusion. -- 3.0 Instructional Objectives. -- 3.1 Steady-State, Ordinary Molecular Diffusion. -- 3.2 Diffusion Coefficients (Diffusivities). -- 3.3 Steady- and Unsteady-State Mass Transfer Through Stationary Media. -- 3.4 Mass Transfer in Laminar Flow. -- 3.5 Mass Transfer in Turbulent Flow. -- 3.6 Models for Mass Transfer in Fluids with a Fluid-Fluid Interface. -- 3.7 Two-Film Theory and Overall Mass-Transfer Coefficients. -- 3.8 Molecular Mass Transfer in Terms of Other Driving Forces. -- Summary References Study Questions Exercises. -- 4. Single Equilibrium Stages and Flash Calculations. -- 4.0 Instructional Objectives. -- 4.1 Gibbs Phase Rule and Degrees of Freedom. -- 4.2 Binary Vapor-Liquid Systems. -- 4.3 Binary Azeotropic Systems. -- 4.4 Multicomponent Flash, Bubble-Point, and Dew-Point Calculations. -- 4.5 Ternary Liquid-Liquid Systems. -- 4.6 Multicomponent Liquid-Liquid Systems. -- 4.7 Solid-Liquid Systems. -- 4.8 Gas-Liquid Systems. -- 4.9 Gas-Solid Systems. -- 4.10 Multiphase Systems. -- Summary References Study Questions Exercises. -- 5. Cascades and Hybrid Systems. -- 5.0 Instructional Objectives. -- 5.1 Cascade Configurations. -- 5.2 Solid-Liquid Cascades. -- 5.3 Single-Section Extraction Cascades. -- 5.4 Multicomponent Vapor-Liquid Cascades. -- 5.5 Membrane Cascades. -- 5.6 Hybrid Systems. -- 5.7 Degrees of Freedom and Specifications for Cascades. -- Summary References Study Questions Exercises. -- PART 2 SEPARATIONS BY PHASE ADDITION OR CREATION. -- 6. Absorption and Stripping of Dilute Mixtures. -- 6.0 Instructional Objectives. -- 6.1 Equipment for Vapor-Liquid Separations. -- 6.2 General Design Considerations. -- 6.3 Graphical Method for Trayed Towers. -- 6.4 Algebraic Method for Determining N. -- 6.5 Stage Efficiency and Column Height for Trayed Columns. -- 6.6 Flooding, Column Diameter, Pressure Drop, and Mass Transfer for Trayed Columns. -- 6.7 Rate-Based Method for Packed Columns. -- 6.8 Packed-Column Liquid Holdup, Diameter, Flooding, Pressure Drop, and Mass-Transfer -- Efficiency. -- 6.9 Concentrated Solutions in Packed Columns. -- Summary References Study Questions Exercises. -- 7. Distillation of Binary Mixtures. -- 7.0 Instructional Objectives. -- 7.1 Equipment and Design Considerations. -- 7.2 McCabe-Thiele Graphical Method for Trayed Towers. -- 7.3 Extensions of the McCabe-Thiele Method. -- 7.4 Estimation of Stage Efficiency for Distillation. -- 7.5 Column and Reflux-Drum Diameters. -- 7.6 Rate-Based Method for Packed Distillation Columns. -- 7.7 Introduction to the Ponchon-Savarit Graphical Equilibrium-Stage Method for Trayed -- Towers. -- Summary References Study Questions Exercises. -- 8. Liquid-Liquid Extraction with Ternary Systems. -- 8.0 Instructional Objectives. -- 8.1 Equipment for Solvent Extraction. -- 8.2 General Design Considerations. -- 8.3 Hunter-Nash Graphical Equilibrium-Stage Method. -- 8.4 Maloney-Schubert Graphical Equilibrium-Stage Method. -- 8.5 Theory and Scale-up of Extractor Performance. -- 8.6 Extraction of Bioproducts. -- Summary References Study Questions Exercises. -- 9. Approximate Methods for Multicomponent, Multistage Separations. -- 9.0 Instructional Objectives. -- 9.1 Fenske-Underwood-Gilliland (FUG) Method. -- 9.2 Kremser Group Method. -- Summary References Study Questions Exercises. -- 10. Equilibrium-Based Methods for Multicomponent Absorption, Stripping, -- Distillation, and Extraction. -- 10.0 Instructional Objectives. -- 10.1 Theoretical Model for an Equilibrium Stage. -- 10.2 Strategy of Mathematical Solution. -- 10.3 Equation-Tearing Procedures. -- 10.4 Newton-Raphson (NR) Method. -- 10.5 Inside-Out Method. -- Summary References Study Questions Exercises. -- 11. Enhanced Distillation and Supercritical Extraction. -- 11.0 Instructional Objectives. -- 11.1 Use of Triangular Graphs. -- 11.2 Extractive Distillation. -- 11.3 Salt Distillation. -- 11.4 Pressure-Swing Distillation. -- 11.5 Homogeneous Azeotropic Distillation. -- 11.6 Heterogeneous Azeotropic Distillation. -- 11.7 Reactive Distillation. -- 11.8 Supercritical-Fluid Extraction. -- Summary References Study Questions Exercises. -- 12. Rate-Based Models for Vapor-Liquid Separation Operations. -- 12.0 Instructional Objectives. -- 12.1 Rate-Based Model. -- 12.2 Thermodynamic Properties and Transport-Rate Expressions. -- 12.3 Methods for Estimating Transport Coefficients and Interfacial Area. -- 12.4 Vapor and Liquid Flow Patterns. -- 12.5 Method of Calculation. -- Summary References Study Questions Exercises. -- 13. Batch Distillation. -- 13.0 Instructional Objectives. -- 13.1 Differential Distillation. -- 13.2 Binary Batch Rectification. -- 13.3 Batch Stripping and Complex Batch Distillation. -- 13.4 Effect of Liquid Holdup. -- 13.5 Shortcut Method for Batch Rectification. -- 13.6 Stage-by-Stage Methods for Batch Rectification. -- 13.7 Intermediate-cut Strategy. -- 13.8 Optimal Control by Variation of Reflux Ratio. -- Summary References Study Questions Exercises. -- PART 3 SEPARATIONS BY BARRIERS AND SOLID AGENTS. -- 14. Membrane Separations. -- 14.0 Instructional Objectives. -- 14.1 Membrane Materials. -- 14.2 Membrane Modules. -- 14.3 Transport in Membranes. -- 14.4 Dialysis. -- 14.5 Electrodialysis. -- 14.6 Reverse Osmosis. -- 14.7 Gas Permeation. -- 14.8 Pervaporation. -- 14.9 Membranes in Bioprocessing. -- Summary References Study Questions Exercises. -- 15. Adsorption, Ion Exchange, Chromatography, and Electrophoresis. -- 15.0 Instructional Objectives. -- 15.1 Sorbents. -- 15.2 Equilibrium Considerations. -- 15.3_ Kinetic and Transport Considerations. -- 15.4 Equipment for Sorption Systems. -- 15.5_ Slurry and Fixed-Bed Adsorption Systems. -- 15.6 Continuous, Countercurrent Adsorption Systems. -- 15.7 Ion-Exchange Cycle. -- 15.8 Electrophoresis. -- Summary References Study Questions Exercises. -- PART 4 SEPARATIONS THAT INVOLVE A SOLID PHASE. -- 16. Leaching and Washing. -- 16.0 Instructional Objectives. -- 16.1 Equipment for Leaching. -- 16.2 Equilibrium-Stage Model for Leaching and Washing. -- 16.3 Rate-Based Model for Leaching. -- Summary References Study Questions Exercises. -- 17. Crystallization, Desublimation, and Evaporation. -- 17.0 Instructional Objectives. -- 17.1 Crystal Geometry. -- 17.2 Thermodynamic Considerations. -- 17.3 Kinetics and Mass Transfer. -- 17.4 Equipment for Solution Crystallization. -- 17.5 The MSMPR Crystallization Model. -- 17.6 Precipitation. -- 17.7 Melt Crystallization. -- 17.8 Zone Melting. -- 17.9 Desublimation. -- 17.10 Evaporation. -- 17.11 Bioproduct Crystallization. -- Summary References Study Questions Exercises -- 18. Drying of Solids. -- 18.0_ Instructional Objectives. -- 18.1 Drying Equipment. -- 18.2 Psychrometry. -- 18.3 Equilibrium-Moisture Content of Solids. -- 18.4 Drying Periods. -- 18.5 Dryer Models. -- 18.6 Drying of Bioproducts. -- Summary References Study Questions Exercises. -- PART 5 MECHANICAL SEPARATION OF PHASES. -- 19. Mechanical Phase Separations. -- 19.0 Instructional Objectives. -- 19.1 Separation-Device Selection. -- 19.2 Industrial Particle-Separator Devices. -- 19.3 Design of Particle Separators. -- 19.4 Design of Solid-Liquid Cake-Filtration Devices Based on Pressure Gradients. -- 19.5 Centrifuge Devices for Solid-Liquid Separations. -- 19.6 Wash Cycles. -- 19.7 Mechanical Separations in Biotechnology. -- Summary References Study Questions Exercises. -- Answers to Selected Exercises. -- Index.".
- 2010028565 title "Separation process principles / J. D. Seader, Ernest J. Henley.".
- 2010028565 type "text".