Matches in Library of Congress for { <http://lccn.loc.gov/2010030988> ?p ?o. }
Showing items 1 to 38 of
38
with 100 items per page.
- 2010030988 contributor B11773761.
- 2010030988 created "c2011.".
- 2010030988 date "2011".
- 2010030988 date "c2011.".
- 2010030988 dateCopyrighted "c2011.".
- 2010030988 description "3.2.4. Adjusting for Covariates -- 3.2.5. Pre-Post Comparisons -- 3.2.6. Choosing a Statistic: Time-Course Microarrays -- 3.3. Recommended Approaches -- 3.4. To Learn More -- 4. Biological Background -- 4.1. Medical Imaging -- 4.1.1. Ultrasound -- 4.1.2. EEG/MEG -- 4.1.3. Magnetic Resonance Imaging -- 4.1.3.1. MRI -- 4.1.3.2. fMRI -- 4.1.4. Positron Emission Tomography -- 4.2. Microarrays -- 4.3. To Learn More -- 5. Multiple Tests -- 5.1. Reducing the Number of Hypotheses to Be Tested -- 5.1.1. Normalization -- 5.1.2. Selection Methods -- 5.1.2.1. Univariate Statistics -- 5.1.2.2. Which Statistic? -- 5.1.2.3. Heuristic Methods -- 5.1.2.4. Which Method? -- 5.2. Controlling the Over All Error Rate -- 5.2.1. An Example: Analyzing Data from Microarrays -- 5.3. Controlling the False Discovery Rate -- 5.3.1. An Example: Analyzing Time-Course Data from Microarrays -- 5.4. Gene Set Enrichment Analysis".
- 2010030988 description "5.5. Software for Performing Multiple Simultaneous Tests -- 5.5.1. AFNI -- 5.5.2. Cyber-T -- 5.5.3. dChip -- 5.5.4. ExactFDR -- 5.5.5. GESS -- 5.5.6. HaploView -- 5.5.7. MatLab -- 5.5.8. R -- 5.5.9. SAM -- 5.5.10. ParaSam -- 5.6. Summary -- 5.7. To Learn More -- 6. The Bootstrap -- 6.1. Samples and Populations -- 6.2. Precision of an Estimate -- 6.2.1. R Code -- 6.2.2. Applying the Bootstrap -- 6.2.3. Bootstrap Reproducibility Index -- 6.2.4. Estimation in Regression Models -- 6.3. Confidence Intervals -- 6.3.1. Testing for Equivalence -- 6.3.2. Parametric Bootstrap -- 6.3.3. Blocked Bootstrap -- 6.3.4. Balanced Bootstrap -- 6.3.5. Adjusted Bootstrap -- 6.3.6. Which Test? -- 6.4. Determining Sample Size -- 6.4.1. Establish a Threshold -- 6.5. Validation -- 6.5.1. Cluster Analysis -- 6.5.2. Correspondence Analysis -- 6.6. Building a Model -- 6.7. How Large Should The Samples Be?".
- 2010030988 description "6.8. Summary -- 6.9. To Learn More -- 7. Classification Methods -- 7.1. Nearest Neighbor Methods -- 7.2. Discriminant Analysis -- 7.3. Logistic Regression -- 7.4. Principal Components -- 7.5. Naive Bayes Classifier -- 7.6. Heuristic Methods -- 7.7. Decision Trees -- 7.7.1. A Worked-Through Example -- 7.8. Which Algorithm Is Best for Your Application? -- 7.8.1. Some Further Comparisons -- 7.8.2. Validation Versus Cross-validation -- 7.9. Improving Diagnostic Effectiveness -- 7.9.1. Boosting -- 7.9.2. Ensemble Methods -- 7.9.3. Random Forests -- 7.10. Software for Decision Trees -- 7.11. Summary -- 8. Applying Decision Trees -- 8.1. Photographs -- 8.2. Ultrasound -- 8.3. MRI Images -- 8.4. EEGs and EMGs -- 8.5. Misclassification Costs -- 8.6. Receiver Operating Characteristic -- 8.7. When the Categories Are As Yet Undefined -- 8.7.1. Unsupervised Principal Components Applied to fMRI".
- 2010030988 description "8.7.2. Supervised Principal Components Applied to Microarrays -- 8.8. Ensemble Methods -- 8.9. Maximally Diversified Multiple Trees -- 8.10. Putting It All Together -- 8.11. Summary -- 8.12. To Learn More -- Glossary of Biomedical Terminology -- Glossary of Statistical Terminology -- Appendix: An R Primer -- R1. Getting Started -- R1.1. R Functions -- R1.2. Vector Arithmetic -- R2. Store and Retrieve Data -- R2.1. Storing and Retrieving Files from Within R -- R2.2. The Tabular Format -- R2.3. Comma Separated Format -- R3. Resampling -- R3.1. The While Command -- R4. Expanding R's Capabilities -- R4.1. Downloading Libraries of R Functions -- R4.2. Programming Your Own Functions.".
- 2010030988 description "Includes bibliographical references and indexes.".
- 2010030988 description "Machine generated contents note: 1. Very Large Arrays -- 1.1. Applications -- 1.2. Problems -- 1.3. Solutions -- 2. Permutation Tests -- 2.1. Two-Sample Comparison -- 2.1.1. Blocks -- 2.2. k-Sample Comparison -- 2.3. Computing The p-Value -- 2.3.1. Monte Carlo Method -- 2.3.2. An R Program -- 2.4. Multiple-Variable Comparisons -- 2.4.1. Euclidean Distance Matrix Analysis -- 2.4.2. Hotelling's T2 -- 2.4.3. Mantel's U -- 2.4.4. Combining Univariate Tests -- 2.4.5. Gene Set Enrichment Analysis -- 2.5. Categorical Data -- 2.6. Software -- 2.7. Summary -- 3. Applying the Permutation Test -- 3.1. Which Variables Should Be Included? -- 3.2. Single-Value Test Statistics -- 3.2.1. Categorical Data -- 3.2.2. A Multivariate Comparison Based on a Summary Statistic -- 3.2.3. A Multivariate Comparison Based on Variants of Hotelling's T2".
- 2010030988 extent "xii, 185 p. :".
- 2010030988 identifier "0470927143 (pbk.)".
- 2010030988 identifier "9780470927144 (pbk.)".
- 2010030988 issued "2011".
- 2010030988 issued "c2011.".
- 2010030988 language "eng".
- 2010030988 publisher "Hoboken, N.J. : Wiley,".
- 2010030988 subject "006.3/12 22".
- 2010030988 subject "2011 F-685".
- 2010030988 subject "Biomedical engineering Data processing.".
- 2010030988 subject "Data Mining.".
- 2010030988 subject "Data mining.".
- 2010030988 subject "Diagnostic Imaging.".
- 2010030988 subject "Functions of several complex variables.".
- 2010030988 subject "Mathematical statistics.".
- 2010030988 subject "Models, Statistical.".
- 2010030988 subject "Oligonucleotide Array Sequence Analysis.".
- 2010030988 subject "QA76.9.D343 G753 2011".
- 2010030988 subject "Remote sensing Data processing.".
- 2010030988 subject "WN 26.5".
- 2010030988 tableOfContents "3.2.4. Adjusting for Covariates -- 3.2.5. Pre-Post Comparisons -- 3.2.6. Choosing a Statistic: Time-Course Microarrays -- 3.3. Recommended Approaches -- 3.4. To Learn More -- 4. Biological Background -- 4.1. Medical Imaging -- 4.1.1. Ultrasound -- 4.1.2. EEG/MEG -- 4.1.3. Magnetic Resonance Imaging -- 4.1.3.1. MRI -- 4.1.3.2. fMRI -- 4.1.4. Positron Emission Tomography -- 4.2. Microarrays -- 4.3. To Learn More -- 5. Multiple Tests -- 5.1. Reducing the Number of Hypotheses to Be Tested -- 5.1.1. Normalization -- 5.1.2. Selection Methods -- 5.1.2.1. Univariate Statistics -- 5.1.2.2. Which Statistic? -- 5.1.2.3. Heuristic Methods -- 5.1.2.4. Which Method? -- 5.2. Controlling the Over All Error Rate -- 5.2.1. An Example: Analyzing Data from Microarrays -- 5.3. Controlling the False Discovery Rate -- 5.3.1. An Example: Analyzing Time-Course Data from Microarrays -- 5.4. Gene Set Enrichment Analysis".
- 2010030988 tableOfContents "5.5. Software for Performing Multiple Simultaneous Tests -- 5.5.1. AFNI -- 5.5.2. Cyber-T -- 5.5.3. dChip -- 5.5.4. ExactFDR -- 5.5.5. GESS -- 5.5.6. HaploView -- 5.5.7. MatLab -- 5.5.8. R -- 5.5.9. SAM -- 5.5.10. ParaSam -- 5.6. Summary -- 5.7. To Learn More -- 6. The Bootstrap -- 6.1. Samples and Populations -- 6.2. Precision of an Estimate -- 6.2.1. R Code -- 6.2.2. Applying the Bootstrap -- 6.2.3. Bootstrap Reproducibility Index -- 6.2.4. Estimation in Regression Models -- 6.3. Confidence Intervals -- 6.3.1. Testing for Equivalence -- 6.3.2. Parametric Bootstrap -- 6.3.3. Blocked Bootstrap -- 6.3.4. Balanced Bootstrap -- 6.3.5. Adjusted Bootstrap -- 6.3.6. Which Test? -- 6.4. Determining Sample Size -- 6.4.1. Establish a Threshold -- 6.5. Validation -- 6.5.1. Cluster Analysis -- 6.5.2. Correspondence Analysis -- 6.6. Building a Model -- 6.7. How Large Should The Samples Be?".
- 2010030988 tableOfContents "6.8. Summary -- 6.9. To Learn More -- 7. Classification Methods -- 7.1. Nearest Neighbor Methods -- 7.2. Discriminant Analysis -- 7.3. Logistic Regression -- 7.4. Principal Components -- 7.5. Naive Bayes Classifier -- 7.6. Heuristic Methods -- 7.7. Decision Trees -- 7.7.1. A Worked-Through Example -- 7.8. Which Algorithm Is Best for Your Application? -- 7.8.1. Some Further Comparisons -- 7.8.2. Validation Versus Cross-validation -- 7.9. Improving Diagnostic Effectiveness -- 7.9.1. Boosting -- 7.9.2. Ensemble Methods -- 7.9.3. Random Forests -- 7.10. Software for Decision Trees -- 7.11. Summary -- 8. Applying Decision Trees -- 8.1. Photographs -- 8.2. Ultrasound -- 8.3. MRI Images -- 8.4. EEGs and EMGs -- 8.5. Misclassification Costs -- 8.6. Receiver Operating Characteristic -- 8.7. When the Categories Are As Yet Undefined -- 8.7.1. Unsupervised Principal Components Applied to fMRI".
- 2010030988 tableOfContents "8.7.2. Supervised Principal Components Applied to Microarrays -- 8.8. Ensemble Methods -- 8.9. Maximally Diversified Multiple Trees -- 8.10. Putting It All Together -- 8.11. Summary -- 8.12. To Learn More -- Glossary of Biomedical Terminology -- Glossary of Statistical Terminology -- Appendix: An R Primer -- R1. Getting Started -- R1.1. R Functions -- R1.2. Vector Arithmetic -- R2. Store and Retrieve Data -- R2.1. Storing and Retrieving Files from Within R -- R2.2. The Tabular Format -- R2.3. Comma Separated Format -- R3. Resampling -- R3.1. The While Command -- R4. Expanding R's Capabilities -- R4.1. Downloading Libraries of R Functions -- R4.2. Programming Your Own Functions.".
- 2010030988 tableOfContents "Machine generated contents note: 1. Very Large Arrays -- 1.1. Applications -- 1.2. Problems -- 1.3. Solutions -- 2. Permutation Tests -- 2.1. Two-Sample Comparison -- 2.1.1. Blocks -- 2.2. k-Sample Comparison -- 2.3. Computing The p-Value -- 2.3.1. Monte Carlo Method -- 2.3.2. An R Program -- 2.4. Multiple-Variable Comparisons -- 2.4.1. Euclidean Distance Matrix Analysis -- 2.4.2. Hotelling's T2 -- 2.4.3. Mantel's U -- 2.4.4. Combining Univariate Tests -- 2.4.5. Gene Set Enrichment Analysis -- 2.5. Categorical Data -- 2.6. Software -- 2.7. Summary -- 3. Applying the Permutation Test -- 3.1. Which Variables Should Be Included? -- 3.2. Single-Value Test Statistics -- 3.2.1. Categorical Data -- 3.2.2. A Multivariate Comparison Based on a Summary Statistic -- 3.2.3. A Multivariate Comparison Based on Variants of Hotelling's T2".
- 2010030988 title "Analyzing the large numbers of variables in biomedical and satellite imagery / Phillip I. Good.".
- 2010030988 type "text".