Matches in Library of Congress for { <http://lccn.loc.gov/2010040519> ?p ?o. }
Showing items 1 to 26 of
26
with 100 items per page.
- 2010040519 contributor B11785248.
- 2010040519 contributor B11785249.
- 2010040519 created "2011.".
- 2010040519 date "2011".
- 2010040519 date "2011.".
- 2010040519 dateCopyrighted "2011.".
- 2010040519 description "Includes bibliographical references and index.".
- 2010040519 description "Machine generated contents note: Chapter 1 Introduction. -- 1.1 Probability metrics. -- 1.2 Applications in finance. -- Chapter 2 Probability distances and metrics. -- 2.1 Introduction. -- 2.2 Some examples of probability metrics. -- 2.2.1 Engineer's metric. -- 2.2.2 Uniform (or Kolmogorov) metric. -- 2.2.3 Levy metric. -- 2.2.4 Kantorovich metric. -- 2.2.5 Lp-metrics between distribution functions. -- 2.2.6 Ky Fan metrics. -- 2.2.7 Lp-metric. -- 2.3 Distance and semidistance spaces. -- 2.4 Definitions of probability distances and metrics. -- 2.5 Summary. -- 2.6 Technical appendix. -- 2.6.1 Universally measurable separable metric spaces. -- 2.6.2 The equivalence of the notions of p. (semi-)distance on P2 and on X. -- Chapter 3 Choice under uncertainty. -- 3.1 Introduction. -- 3.2 Expected utility theory. -- 3.2.1 St. Petersburg Paradox. -- 3.2.2 The von Neumann-Morgenstern expected utility theory. -- 3.2.3 Types of utility functions. -- 3.3 Stochastic dominance. -- 3.3.1 First-order stochastic dominance. -- 3.3.2 Second-order stochastic dominance. -- 3.3.3 Rothschild-Stiglitz stochastic dominance. -- 3.3.4 Third-order stochastic dominance. -- 3.3.5 Efficient sets and the portfolio choice problem. -- 3.3.6 Return versus payoff. -- 3.4 Probability metrics and stochastic dominance. -- 3.5 Cumulative Prospect Theory. -- 3.6 Summary. -- 3.7 Technical appendix. -- 3.7.1 The axioms of choice. -- 3.7.2 Stochastic dominance relations of order n. -- 3.7.3 Return versus payoff and stochastic dominance. -- 3.7.4 Other stochastic dominance relations. -- Chapter 4 A classification of probability distances. -- 4.1 Introduction. -- 4.2 Primary distances and primary metrics. -- 4.3 Simple distances and metrics. -- 4.4 Compound distances and moment functions. -- 4.5 Ideal probability metrics. -- 4.5.1 Interpretation and examples of ideal probability metrics. -- 4.5.2 Conditions for boundedness of ideal probability metrics. -- 4.6 Summary. -- 4.7 Technical appendix. -- 4.7.1 Examples of primary distances. -- 4.7.2 Examples of simple distances. -- 4.7.3 Examples of compound distances. -- 4.7.4 Examples of moment functions. -- Chapter 5 Risk and uncertainty. -- 5.1 Introduction. -- 5.2 Measures of dispersion. -- 5.2.1 Standard deviation. -- 5.2.2 Mean absolute deviation. -- 5.2.3 Semi-standard deviation. -- 5.2.4 Axiomatic description. -- 5.2.5 Deviation measures. -- 5.3 Probability metrics and dispersion measures. -- 5.4 Measures of risk. -- 5.4.1 Value-at-risk. -- 5.4.2 Computing portfolio VaR in practice. -- 5.4.3 Back-testing of VaR. -- 5.4.4 Coherent risk measures. -- 5.5 Risk measures and dispersion measures. -- 5.6 Risk measures and stochastic orders. -- 5.7 Summary. -- 5.8 Technical appendix. -- 5.8.1 Convex risk measures. -- 5.8.2 Probability metrics and deviation measures. -- 5.8.3 Deviation measures and probability quasi-metrics. -- Chapter 6 Average value-at-risk. -- 6.1 Introduction. -- 6.2 Average value-at-risk. -- 6.2.1 AVaR for stable distributions. -- 6.3 AVaR estimation from a sample. -- 6.4 Computing portfolio AVaR in practice. -- 6.4.1 The multivariate normal assumption. -- 6.4.2 The Historical Method. -- 6.4.3 The Hybrid Method. -- 6.4.4 The Monte Carlo Method. -- 6.4.5 Kernel methods. -- 6.5 Back-testing of AVaR. -- 6.6 Spectral risk measures. -- 6.7 Risk measures and probability metrics. -- 6.8 Risk measures based on distortion functionals. -- 6.9 Summary. -- 6.10 Technical appendix. -- 6.10.1 Characteristics of conditional loss distributions. -- 6.10.2 Higher-order AVaR. -- 6.10.3 The minimization formula for AVaR. -- 6.10.4 ETL vs AVaR. -- 6.10.5 Kernel-based estimation of AVaR. -- 6.10.6 Remarks on spectral risk measures. -- Chapter 7 Computing AVaR through Monte Carlo. -- 7.1 Introduction. -- 7.2 An illustration of Monte Carlo variability. -- 7.3 Asymptotic distribution, classical conditions. -- 7.4 Rate of convergence to the normal distribution. -- 7.4.1 The effect of tail thickness. -- 7.4.2 The effect of tail truncation. -- 7.4.3 Infinite variance distributions. -- 7.5 Asymptotic distribution, heavy-tailed returns. -- 7.6 Rate of convergence, heavy-tailed returns. -- 7.6.1 Stable Paretian distributions. -- 7.6.2 Student's t distribution. -- 7.7 On the choice of a distributional model. -- 7.7.1 Tail behavior and return frequency. -- 7.7.2 Practical implications. -- 7.8 Summary. -- 7.9 Technical appendix. -- 7.9.1 Proof of the stable limit result. -- Chapter 8 Stochastic dominance revisited. -- 8.1 Introduction. -- 8.2 Metrization of preference relations. -- 8.3 The Hausdorff metric structure. -- 8.4 Examples. -- 8.4.1 The Levy quasi-semidistance and first-order stochastic dominance. -- 8.4.2 Higher order stochastic dominance. -- 8.4.3 The H-quasi-semidistance. -- 8.4.4 AVaR generated stochastic orders. -- 8.4.5 Compound quasi-semidistances. -- 8.5 Utility-type representations. -- 8.6 Almost stochastic orders and degree of violation. -- 8.7 Summary. -- 8.8 Technical appendix. -- 8.8.1 Preference relations and topology. -- 8.8.2 Quasi-semidistances and preference relations. -- 8.8.3 Construction of quasi-semidistances on classes of investors. -- 8.8.4 Investors with balanced views. -- 8.8.5 Structural classification of probability distances.".
- 2010040519 extent "xvi, 375 p. :".
- 2010040519 identifier "1405183691".
- 2010040519 identifier "9781405183697".
- 2010040519 identifier 9781405183697.jpg.
- 2010040519 identifier 2010040519-b.html.
- 2010040519 identifier 2010040519-d.html.
- 2010040519 identifier 2010040519-t.html.
- 2010040519 issued "2011".
- 2010040519 issued "2011.".
- 2010040519 language "eng".
- 2010040519 publisher "Chichester, West Sussex, U.K. ; Malden, MA : Wiley-Blackwell,".
- 2010040519 subject "332.01/5192 22".
- 2010040519 subject "Financial risk management.".
- 2010040519 subject "HD61 .R33 2011".
- 2010040519 subject "Probabilities.".
- 2010040519 tableOfContents "Machine generated contents note: Chapter 1 Introduction. -- 1.1 Probability metrics. -- 1.2 Applications in finance. -- Chapter 2 Probability distances and metrics. -- 2.1 Introduction. -- 2.2 Some examples of probability metrics. -- 2.2.1 Engineer's metric. -- 2.2.2 Uniform (or Kolmogorov) metric. -- 2.2.3 Levy metric. -- 2.2.4 Kantorovich metric. -- 2.2.5 Lp-metrics between distribution functions. -- 2.2.6 Ky Fan metrics. -- 2.2.7 Lp-metric. -- 2.3 Distance and semidistance spaces. -- 2.4 Definitions of probability distances and metrics. -- 2.5 Summary. -- 2.6 Technical appendix. -- 2.6.1 Universally measurable separable metric spaces. -- 2.6.2 The equivalence of the notions of p. (semi-)distance on P2 and on X. -- Chapter 3 Choice under uncertainty. -- 3.1 Introduction. -- 3.2 Expected utility theory. -- 3.2.1 St. Petersburg Paradox. -- 3.2.2 The von Neumann-Morgenstern expected utility theory. -- 3.2.3 Types of utility functions. -- 3.3 Stochastic dominance. -- 3.3.1 First-order stochastic dominance. -- 3.3.2 Second-order stochastic dominance. -- 3.3.3 Rothschild-Stiglitz stochastic dominance. -- 3.3.4 Third-order stochastic dominance. -- 3.3.5 Efficient sets and the portfolio choice problem. -- 3.3.6 Return versus payoff. -- 3.4 Probability metrics and stochastic dominance. -- 3.5 Cumulative Prospect Theory. -- 3.6 Summary. -- 3.7 Technical appendix. -- 3.7.1 The axioms of choice. -- 3.7.2 Stochastic dominance relations of order n. -- 3.7.3 Return versus payoff and stochastic dominance. -- 3.7.4 Other stochastic dominance relations. -- Chapter 4 A classification of probability distances. -- 4.1 Introduction. -- 4.2 Primary distances and primary metrics. -- 4.3 Simple distances and metrics. -- 4.4 Compound distances and moment functions. -- 4.5 Ideal probability metrics. -- 4.5.1 Interpretation and examples of ideal probability metrics. -- 4.5.2 Conditions for boundedness of ideal probability metrics. -- 4.6 Summary. -- 4.7 Technical appendix. -- 4.7.1 Examples of primary distances. -- 4.7.2 Examples of simple distances. -- 4.7.3 Examples of compound distances. -- 4.7.4 Examples of moment functions. -- Chapter 5 Risk and uncertainty. -- 5.1 Introduction. -- 5.2 Measures of dispersion. -- 5.2.1 Standard deviation. -- 5.2.2 Mean absolute deviation. -- 5.2.3 Semi-standard deviation. -- 5.2.4 Axiomatic description. -- 5.2.5 Deviation measures. -- 5.3 Probability metrics and dispersion measures. -- 5.4 Measures of risk. -- 5.4.1 Value-at-risk. -- 5.4.2 Computing portfolio VaR in practice. -- 5.4.3 Back-testing of VaR. -- 5.4.4 Coherent risk measures. -- 5.5 Risk measures and dispersion measures. -- 5.6 Risk measures and stochastic orders. -- 5.7 Summary. -- 5.8 Technical appendix. -- 5.8.1 Convex risk measures. -- 5.8.2 Probability metrics and deviation measures. -- 5.8.3 Deviation measures and probability quasi-metrics. -- Chapter 6 Average value-at-risk. -- 6.1 Introduction. -- 6.2 Average value-at-risk. -- 6.2.1 AVaR for stable distributions. -- 6.3 AVaR estimation from a sample. -- 6.4 Computing portfolio AVaR in practice. -- 6.4.1 The multivariate normal assumption. -- 6.4.2 The Historical Method. -- 6.4.3 The Hybrid Method. -- 6.4.4 The Monte Carlo Method. -- 6.4.5 Kernel methods. -- 6.5 Back-testing of AVaR. -- 6.6 Spectral risk measures. -- 6.7 Risk measures and probability metrics. -- 6.8 Risk measures based on distortion functionals. -- 6.9 Summary. -- 6.10 Technical appendix. -- 6.10.1 Characteristics of conditional loss distributions. -- 6.10.2 Higher-order AVaR. -- 6.10.3 The minimization formula for AVaR. -- 6.10.4 ETL vs AVaR. -- 6.10.5 Kernel-based estimation of AVaR. -- 6.10.6 Remarks on spectral risk measures. -- Chapter 7 Computing AVaR through Monte Carlo. -- 7.1 Introduction. -- 7.2 An illustration of Monte Carlo variability. -- 7.3 Asymptotic distribution, classical conditions. -- 7.4 Rate of convergence to the normal distribution. -- 7.4.1 The effect of tail thickness. -- 7.4.2 The effect of tail truncation. -- 7.4.3 Infinite variance distributions. -- 7.5 Asymptotic distribution, heavy-tailed returns. -- 7.6 Rate of convergence, heavy-tailed returns. -- 7.6.1 Stable Paretian distributions. -- 7.6.2 Student's t distribution. -- 7.7 On the choice of a distributional model. -- 7.7.1 Tail behavior and return frequency. -- 7.7.2 Practical implications. -- 7.8 Summary. -- 7.9 Technical appendix. -- 7.9.1 Proof of the stable limit result. -- Chapter 8 Stochastic dominance revisited. -- 8.1 Introduction. -- 8.2 Metrization of preference relations. -- 8.3 The Hausdorff metric structure. -- 8.4 Examples. -- 8.4.1 The Levy quasi-semidistance and first-order stochastic dominance. -- 8.4.2 Higher order stochastic dominance. -- 8.4.3 The H-quasi-semidistance. -- 8.4.4 AVaR generated stochastic orders. -- 8.4.5 Compound quasi-semidistances. -- 8.5 Utility-type representations. -- 8.6 Almost stochastic orders and degree of violation. -- 8.7 Summary. -- 8.8 Technical appendix. -- 8.8.1 Preference relations and topology. -- 8.8.2 Quasi-semidistances and preference relations. -- 8.8.3 Construction of quasi-semidistances on classes of investors. -- 8.8.4 Investors with balanced views. -- 8.8.5 Structural classification of probability distances.".
- 2010040519 title "A probability metrics approach to financial risk measures / Svetlozar T. Rachev, Stoyan V. Stoyanov, Frank J. Fabozzi, CFA.".
- 2010040519 type "text".