Matches in Library of Congress for { <http://lccn.loc.gov/2010050333> ?p ?o. }
Showing items 1 to 23 of
23
with 100 items per page.
- 2010050333 contributor B11797057.
- 2010050333 created "2011, ©2011".
- 2010050333 date "2011".
- 2010050333 date "2011, ©2011".
- 2010050333 dateCopyrighted "2011, ©2011".
- 2010050333 description "Includes bibliographical references (pages 554-556) and index.".
- 2010050333 description "Machine generated contents note: Preface; Introduction; Part I. Elements of Real Analysis: 1. Internal set theory; 2. The real number system; 3. Sequences and series; 4. The topology of R; 5. Limits and continuity; 6. Differentiation; 7. Integration; 8. Sequences and series of functions; 9. Infinite series; Part II. Elements of Abstract Analysis: 10. Point set topology; 11. Metric spaces; 12. Complete metric spaces; 13. Some applications of completeness; 14. Linear operators; 15. Differential calculus on Rn; 16. Function space topologies; A. Vector spaces; B. The b-adic representation of numbers; C. Finite, denumerable, and uncountable sets; D. The syntax of mathematical languages; References; Index.".
- 2010050333 extent "xix, 565 pages ;".
- 2010050333 identifier "9781107002029 (hardback)".
- 2010050333 identifier 9781107002029.jpg.
- 2010050333 isPartOf "Encyclopedia of mathematics and its applications ; 140".
- 2010050333 issued "2011".
- 2010050333 issued "2011, ©2011".
- 2010050333 language "eng".
- 2010050333 publisher "Cambridge ; New York : Cambridge University Press,".
- 2010050333 subject "515 22".
- 2010050333 subject "MATHEMATICS / Mathematical Analysis bisacsh.".
- 2010050333 subject "Mathematical analysis.".
- 2010050333 subject "QA300 .V28 2011".
- 2010050333 subject "Set theory.".
- 2010050333 tableOfContents "Machine generated contents note: Preface; Introduction; Part I. Elements of Real Analysis: 1. Internal set theory; 2. The real number system; 3. Sequences and series; 4. The topology of R; 5. Limits and continuity; 6. Differentiation; 7. Integration; 8. Sequences and series of functions; 9. Infinite series; Part II. Elements of Abstract Analysis: 10. Point set topology; 11. Metric spaces; 12. Complete metric spaces; 13. Some applications of completeness; 14. Linear operators; 15. Differential calculus on Rn; 16. Function space topologies; A. Vector spaces; B. The b-adic representation of numbers; C. Finite, denumerable, and uncountable sets; D. The syntax of mathematical languages; References; Index.".
- 2010050333 title "Real analysis through modern infinitesimals / Nader Vakil.".
- 2010050333 type "text".