Matches in Library of Congress for { <http://lccn.loc.gov/2011027953> ?p ?o. }
Showing items 1 to 20 of
20
with 100 items per page.
- 2011027953 contributor B12132592.
- 2011027953 created "c2012.".
- 2011027953 date "2012".
- 2011027953 date "c2012.".
- 2011027953 dateCopyrighted "c2012.".
- 2011027953 description "Includes bibliographical references and index.".
- 2011027953 description "Machine generated contents note: 1.Heat Conduction Equations -- 1.1.Introduction -- 1.1.1.Conduction -- 1.1.1.1.Fourier's Conduction Law -- 1.1.2.Convection -- 1.1.2.1.Newton's Cooling Law -- 1.1.3.Radiation -- 1.1.3.1.Stefan-Boltzmann Law -- 1.1.4.Combined Modes of Heat Transfer -- 1.2.General Heat Conduction Equations -- 1.2.1.Derivations of General Heat Conduction Equations -- 1.3.Boundary and Initial Conditions -- 1.3.1.Boundary Conditions -- 1.3.2.Initial Conditions -- 1.4.Simplified Heat Conduction Equations -- Problems -- Reference -- 2.1-D Steady-State Heat Conduction -- 2.1.Conduction through Plane Walls -- 2.1.1.Conduction through Circular Tube Walls -- 2.1.2.Critical Radius of Insulation -- 2.2.Conduction with Heat Generation -- 2.3.Conduction through Fins with Uniform Cross-Sectional Area -- 2.3.1.Fin Performance -- 2.3.1.1.Fin Effectiveness -- 2.3.1.2.Fin Efficiency -- 2.3.2.Radiation Effect -- 2.4.Conduction through Fins with Variable Cross-Sectional Area: Bessel Function Solutions -- 2.4.1.Radiation Effect -- Problems -- References -- 3.2-D Steady-State Heat Conduction -- 3.1.Method of Separation of Variables: Given Temperature BC -- 3.2.Method of Separation of Variables: Given Heat Flux and Convection BCs -- 3.2.1.Given Surface Heat Flux BC -- 3.2.2.Given Surface Convection BC -- 3.3.Principle of Superposition for Nonhomogeneous BCs Superposition -- 3.3.1.2-D Heat Conduction in Cylindrical Coordinates -- 3.4.Principle of Superposition for Multidimensional Heat Conduction and for Nonhomogeneous Equations -- 3.4.1.3-D Heat Conduction Problem -- 3.4.2.Nonhomogeneous Heat Conduction Problem -- Problems -- References -- 4.Transient Heat Conduction -- 4.1.Method of Lumped Capacitance for 0-D Problems -- 4.1.1.Radiation Effect -- 4.2.Method of Separation of Variables for 1-D and for Multidimensional Transient Conduction Problems -- 4.2.1.1-D Transient Heat Conduction in a Slab -- 4.2.2.Multidimensional Transient Heat Conduction in a Slab (2-D or 3-D) -- 4.2.3.1-D Transient Heat Conduction in a Rectangle with Heat Generation -- 4.3.1-D Transient Heat Conduction in a Semiinfinite Solid Material -- 4.3.1.Similarity Method for Semiinfinite Solid Material -- 4.3.2.Laplace Transform Method for Semiinfinite Solid Material -- 4.3.3.Approximate Integral Method for Semiinfinite Solid Material -- 4.4.Heat Conduction with Moving Boundaries -- 4.4.1.Freezing and Solidification Problems Using the Similarity Method -- 4.4.2.Melting and Ablation Problems Using the Approximate Integral Method -- 4.4.2.1.Ablation -- Problems -- References -- 5.Numerical Analysis in Heat Conduction -- 5.1.Finite-Difference Energy Balance Method for 2-D Steady-State Heat Conduction -- 5.2.Finite-Difference Energy Balance Method for 1-D Transient Heat Conduction -- 5.2.1.Finite-Difference Explicit Method -- 5.2.2.Finite-Difference Implicit Method -- 5.3.2-D Transient Heat Conduction -- Problems -- References -- 6.Heat Convection Equations -- 6.1.Boundary-Layer Concepts -- 6.2.General Heat Convection Equations -- 6.3.2-D Heat Convection Equations -- 6.4.Boundary-Layer Approximations -- 6.4.1.Boundary-Layer Similarity/Dimensional Analysis -- 6.4.2.Reynolds Analogy -- Problems -- References -- 7.External Forced Convection -- 7.1.Laminar Flow and Heat Transfer over a Flat Surface: Similarity Solution -- 7.1.1.Summary of the Similarity Solution for Laminar Boundary-Layer Flow and Heat Transfer over a Flat Surface -- 7.2.Laminar Flow and Heat Transfer over a Flat Surface: Integral Method -- 7.2.1.Momentum Integral Equation by Von Karman -- 7.2.2.Energy Integral Equation by Pohlhausen -- 7.2.3.Outline of the Integral Approximate Method -- Problems -- References -- 8.Internal Forced Convection -- 8.1.Velocity and Temperature Profiles in a Circular Tube or between Parallel Plates -- 8.2.Fully Developed Laminar Flow and Heat Transfer in a Circular Tube or between Parallel Plates -- 8.2.1.Fully Developed Flow in a Tube: Friction Factor -- 8.2.2 Case 1 Uniform Wall Heat Flux -- 8.2.3 Case 2 Uniform Wall Temperature -- Problems -- References -- 9.Natural Convection -- 9.1.Laminar Natural Convection on a Vertical Wall: Similarity Solution -- 9.2.Laminar Natural Convection on a Vertical Wall: Integral Method -- Problems -- References -- 10.Turbulent Flow Heat Transfer -- 10.1.Reynolds-Averaged Navier-Stokes (RANS) Equation -- 10.1.1.Continuity Equation -- 10.1.2.Momentum Equation: RANS -- 10.1.3.Enthalpy/Energy Equation -- 10.1.4.Concept of Eddy or Turbulent Diffusivity -- 10.1.5.Reynolds Analogy for Turbulent Flow -- 10.2.Prandtl Mixing Length Theory and Law of Wall for Velocity and Temperature Profiles -- 10.3.Turbulent Flow Heat Transfer -- Problems -- References -- 11.Fundamental Radiation -- 11.1.Thermal Radiation Intensity and Emissive Power -- 11.2.Surface Radiation Properties for Blackbody and Real-Surface Radiation -- 11.3.Solar and Atmospheric Radiation -- Problems -- References -- 12.View Factor -- 12.1.View Factor -- 12.2.Evaluation of View Factor -- 12.2.1 Method 1 Hottel's Crossed-String Method for 2-D Geometry -- 12.2.2 Method 2 Double-Area Integration -- 12.2.3 Method 3 Contour Integration -- 12.2.4 Method 4 Algebraic Method -- Problems -- References -- 13.Radiation Exchange in a Nonparticipating Medium -- 13.1.Radiation Exchange between Gray Diffuse Isothermal Surfaces in an Enclosure -- 13.1.1 Method 1 Electric Network Analogy -- 13.1.2 Method 2 Matrix Linear Equations -- 13.2.Radiation Exchange between Gray Diffuse Nonisothermal Surfaces -- 13.3.Radiation Exchange between Nongray Diffuse Isothermal Surfaces -- 13.4.Radiation Interchange among Diffuse and Nondiffuse (Specular) Surfaces -- 13.5.Energy Balance in an Enclosure with Diffuse and Specular Surface -- Problems -- References -- 14.Radiation Transfer through Gases -- 14.1.Gas Radiation Properties -- 14.1.1.Volumetric Absorption -- 14.1.2.Geometry of Gas Radiation: Geometric Mean Beam Length -- 14.2.Radiation Exchange between an Isothermal Gray Gas and Gray Diffuse Isothermal Surfaces in an Enclosure -- 14.2.1.Matrix Linear Equations -- 14.2.2.Electric Network Analogy -- 14.3.Radiation Transfer through Gases with Nonuniform Temperature -- 14.3.1.Cryogenic Thermal Insulation -- 14.3.2.Radiation Transport Equation in the Participating Medium -- Problems -- References -- Appendix A Mathematical Relations and Functions -- A.1.Useful Formulas -- A.2.Hyperbolic Functions -- A.3.Bessel Functions -- A.3.1.Bessel Functions and Properties -- A.3.2.Bessel Functions of the First Kind -- A.3.3.Modified Bessel Functions of the First and Second Kinds -- A.4.Gaussian Error Function -- References.".
- 2011027953 extent "xii, 314 p. :".
- 2011027953 identifier "143986196X (alk. paper)".
- 2011027953 identifier "9781439861967 (alk. paper)".
- 2011027953 issued "2012".
- 2011027953 issued "c2012.".
- 2011027953 language "eng".
- 2011027953 publisher "Boca Raton, FL : CRC Press,".
- 2011027953 subject "621.402/2 23".
- 2011027953 subject "Heat Transmission.".
- 2011027953 subject "QC320 .H225 2012".
- 2011027953 tableOfContents "Machine generated contents note: 1.Heat Conduction Equations -- 1.1.Introduction -- 1.1.1.Conduction -- 1.1.1.1.Fourier's Conduction Law -- 1.1.2.Convection -- 1.1.2.1.Newton's Cooling Law -- 1.1.3.Radiation -- 1.1.3.1.Stefan-Boltzmann Law -- 1.1.4.Combined Modes of Heat Transfer -- 1.2.General Heat Conduction Equations -- 1.2.1.Derivations of General Heat Conduction Equations -- 1.3.Boundary and Initial Conditions -- 1.3.1.Boundary Conditions -- 1.3.2.Initial Conditions -- 1.4.Simplified Heat Conduction Equations -- Problems -- Reference -- 2.1-D Steady-State Heat Conduction -- 2.1.Conduction through Plane Walls -- 2.1.1.Conduction through Circular Tube Walls -- 2.1.2.Critical Radius of Insulation -- 2.2.Conduction with Heat Generation -- 2.3.Conduction through Fins with Uniform Cross-Sectional Area -- 2.3.1.Fin Performance -- 2.3.1.1.Fin Effectiveness -- 2.3.1.2.Fin Efficiency -- 2.3.2.Radiation Effect -- 2.4.Conduction through Fins with Variable Cross-Sectional Area: Bessel Function Solutions -- 2.4.1.Radiation Effect -- Problems -- References -- 3.2-D Steady-State Heat Conduction -- 3.1.Method of Separation of Variables: Given Temperature BC -- 3.2.Method of Separation of Variables: Given Heat Flux and Convection BCs -- 3.2.1.Given Surface Heat Flux BC -- 3.2.2.Given Surface Convection BC -- 3.3.Principle of Superposition for Nonhomogeneous BCs Superposition -- 3.3.1.2-D Heat Conduction in Cylindrical Coordinates -- 3.4.Principle of Superposition for Multidimensional Heat Conduction and for Nonhomogeneous Equations -- 3.4.1.3-D Heat Conduction Problem -- 3.4.2.Nonhomogeneous Heat Conduction Problem -- Problems -- References -- 4.Transient Heat Conduction -- 4.1.Method of Lumped Capacitance for 0-D Problems -- 4.1.1.Radiation Effect -- 4.2.Method of Separation of Variables for 1-D and for Multidimensional Transient Conduction Problems -- 4.2.1.1-D Transient Heat Conduction in a Slab -- 4.2.2.Multidimensional Transient Heat Conduction in a Slab (2-D or 3-D) -- 4.2.3.1-D Transient Heat Conduction in a Rectangle with Heat Generation -- 4.3.1-D Transient Heat Conduction in a Semiinfinite Solid Material -- 4.3.1.Similarity Method for Semiinfinite Solid Material -- 4.3.2.Laplace Transform Method for Semiinfinite Solid Material -- 4.3.3.Approximate Integral Method for Semiinfinite Solid Material -- 4.4.Heat Conduction with Moving Boundaries -- 4.4.1.Freezing and Solidification Problems Using the Similarity Method -- 4.4.2.Melting and Ablation Problems Using the Approximate Integral Method -- 4.4.2.1.Ablation -- Problems -- References -- 5.Numerical Analysis in Heat Conduction -- 5.1.Finite-Difference Energy Balance Method for 2-D Steady-State Heat Conduction -- 5.2.Finite-Difference Energy Balance Method for 1-D Transient Heat Conduction -- 5.2.1.Finite-Difference Explicit Method -- 5.2.2.Finite-Difference Implicit Method -- 5.3.2-D Transient Heat Conduction -- Problems -- References -- 6.Heat Convection Equations -- 6.1.Boundary-Layer Concepts -- 6.2.General Heat Convection Equations -- 6.3.2-D Heat Convection Equations -- 6.4.Boundary-Layer Approximations -- 6.4.1.Boundary-Layer Similarity/Dimensional Analysis -- 6.4.2.Reynolds Analogy -- Problems -- References -- 7.External Forced Convection -- 7.1.Laminar Flow and Heat Transfer over a Flat Surface: Similarity Solution -- 7.1.1.Summary of the Similarity Solution for Laminar Boundary-Layer Flow and Heat Transfer over a Flat Surface -- 7.2.Laminar Flow and Heat Transfer over a Flat Surface: Integral Method -- 7.2.1.Momentum Integral Equation by Von Karman -- 7.2.2.Energy Integral Equation by Pohlhausen -- 7.2.3.Outline of the Integral Approximate Method -- Problems -- References -- 8.Internal Forced Convection -- 8.1.Velocity and Temperature Profiles in a Circular Tube or between Parallel Plates -- 8.2.Fully Developed Laminar Flow and Heat Transfer in a Circular Tube or between Parallel Plates -- 8.2.1.Fully Developed Flow in a Tube: Friction Factor -- 8.2.2 Case 1 Uniform Wall Heat Flux -- 8.2.3 Case 2 Uniform Wall Temperature -- Problems -- References -- 9.Natural Convection -- 9.1.Laminar Natural Convection on a Vertical Wall: Similarity Solution -- 9.2.Laminar Natural Convection on a Vertical Wall: Integral Method -- Problems -- References -- 10.Turbulent Flow Heat Transfer -- 10.1.Reynolds-Averaged Navier-Stokes (RANS) Equation -- 10.1.1.Continuity Equation -- 10.1.2.Momentum Equation: RANS -- 10.1.3.Enthalpy/Energy Equation -- 10.1.4.Concept of Eddy or Turbulent Diffusivity -- 10.1.5.Reynolds Analogy for Turbulent Flow -- 10.2.Prandtl Mixing Length Theory and Law of Wall for Velocity and Temperature Profiles -- 10.3.Turbulent Flow Heat Transfer -- Problems -- References -- 11.Fundamental Radiation -- 11.1.Thermal Radiation Intensity and Emissive Power -- 11.2.Surface Radiation Properties for Blackbody and Real-Surface Radiation -- 11.3.Solar and Atmospheric Radiation -- Problems -- References -- 12.View Factor -- 12.1.View Factor -- 12.2.Evaluation of View Factor -- 12.2.1 Method 1 Hottel's Crossed-String Method for 2-D Geometry -- 12.2.2 Method 2 Double-Area Integration -- 12.2.3 Method 3 Contour Integration -- 12.2.4 Method 4 Algebraic Method -- Problems -- References -- 13.Radiation Exchange in a Nonparticipating Medium -- 13.1.Radiation Exchange between Gray Diffuse Isothermal Surfaces in an Enclosure -- 13.1.1 Method 1 Electric Network Analogy -- 13.1.2 Method 2 Matrix Linear Equations -- 13.2.Radiation Exchange between Gray Diffuse Nonisothermal Surfaces -- 13.3.Radiation Exchange between Nongray Diffuse Isothermal Surfaces -- 13.4.Radiation Interchange among Diffuse and Nondiffuse (Specular) Surfaces -- 13.5.Energy Balance in an Enclosure with Diffuse and Specular Surface -- Problems -- References -- 14.Radiation Transfer through Gases -- 14.1.Gas Radiation Properties -- 14.1.1.Volumetric Absorption -- 14.1.2.Geometry of Gas Radiation: Geometric Mean Beam Length -- 14.2.Radiation Exchange between an Isothermal Gray Gas and Gray Diffuse Isothermal Surfaces in an Enclosure -- 14.2.1.Matrix Linear Equations -- 14.2.2.Electric Network Analogy -- 14.3.Radiation Transfer through Gases with Nonuniform Temperature -- 14.3.1.Cryogenic Thermal Insulation -- 14.3.2.Radiation Transport Equation in the Participating Medium -- Problems -- References -- Appendix A Mathematical Relations and Functions -- A.1.Useful Formulas -- A.2.Hyperbolic Functions -- A.3.Bessel Functions -- A.3.1.Bessel Functions and Properties -- A.3.2.Bessel Functions of the First Kind -- A.3.3.Modified Bessel Functions of the First and Second Kinds -- A.4.Gaussian Error Function -- References.".
- 2011027953 title "Analytical heat transfer / Je-Chin Han.".
- 2011027953 type "text".