Matches in Library of Congress for { <http://lccn.loc.gov/2012023035> ?p ?o. }
Showing items 1 to 32 of
32
with 100 items per page.
- 2012023035 contributor B12453859.
- 2012023035 contributor B12453860.
- 2012023035 created "2012.".
- 2012023035 date "2012".
- 2012023035 date "2012.".
- 2012023035 dateCopyrighted "2012.".
- 2012023035 description "Description based on print version record and CIP data provided by publisher; resource not viewed.".
- 2012023035 description "Includes bibliographical references and index.".
- 2012023035 description "Machine generated contents note: Preface 1. Introduction 1.1 Model formulation 1.2 Model identification 1.3 Model estimation 1.4 Model evaluation 1.5 Model modification 2. Confirmatory factor analysis (CFA) Models 2.1 Basics of CFA 2.2 CFA with continuous indicators 2.3 CFA with non-normal and censored continuous indicators 2.4 CFA with categorical indicators 2.5 Higher-order CFA 3. Structural Equation Models (SEM) 3.1 Multiple indicators and multiple causes (MIMIC) Model 3.2 Structural equation model 3.3 Correcting for measurement errors in single indicator variables 3.4 Testing interactions involving latent variables 4. Latent growth modeling (LGM) for longitudinal data 4.1 Linear latent growth model (LGM) 4.2 Non-linear LGM 4.3 LGM with multiple growth processes 4.4 Two-part LGM 4.5 LGM with categorical outcomes 5. Multi-Group Modeling 5.1 Multi-group confirmatory factor analysis (CFA) model 5.2 Multi-group structural equation model (SEM) 5.3 Multi-group latent growth model (LGM) 6. Mixture models 6.1 Latent class analysis (LCA) model 6.2 Latent transition analysis (LTA) model 6.3 Growth mixture model (GMM) 6.4 Factor Mixture Model (FMM) 7. Sample Size for Structural Equation Modeling 7.1 Rule of thumbs for sample size needed for SEM 7.2 Satorra-Saris's method for sample size estimation 7.3 Monte Carlo simulation for sample size estimation 7.4 Estimate sample size for SEM based on model fit statistics/indexes References Index .".
- 2012023035 extent "1 online resource.".
- 2012023035 hasFormat "Structural equation modeling with Mplus".
- 2012023035 identifier "9781118356296 (MobiPocket)".
- 2012023035 identifier "9781118356302 (ePub)".
- 2012023035 identifier "9781118356319 ( Adobe PDF)".
- 2012023035 identifier 9781119978299.jpg.
- 2012023035 isFormatOf "Structural equation modeling with Mplus".
- 2012023035 isPartOf "Wiley series in probability and statistics".
- 2012023035 issued "2012".
- 2012023035 issued "2012.".
- 2012023035 language "eng".
- 2012023035 publisher "Hoboken, N.J. : Wiley,".
- 2012023035 relation "Structural equation modeling with Mplus".
- 2012023035 subject "519.5/3 23".
- 2012023035 subject "Mplus.".
- 2012023035 subject "Multivariate analysis Data processing.".
- 2012023035 subject "QA278.3".
- 2012023035 subject "SOCIAL SCIENCE / Statistics. bisacsh".
- 2012023035 subject "Social sciences Statistical methods Data processing.".
- 2012023035 subject "Structural equation modeling Data processing.".
- 2012023035 tableOfContents "Machine generated contents note: Preface 1. Introduction 1.1 Model formulation 1.2 Model identification 1.3 Model estimation 1.4 Model evaluation 1.5 Model modification 2. Confirmatory factor analysis (CFA) Models 2.1 Basics of CFA 2.2 CFA with continuous indicators 2.3 CFA with non-normal and censored continuous indicators 2.4 CFA with categorical indicators 2.5 Higher-order CFA 3. Structural Equation Models (SEM) 3.1 Multiple indicators and multiple causes (MIMIC) Model 3.2 Structural equation model 3.3 Correcting for measurement errors in single indicator variables 3.4 Testing interactions involving latent variables 4. Latent growth modeling (LGM) for longitudinal data 4.1 Linear latent growth model (LGM) 4.2 Non-linear LGM 4.3 LGM with multiple growth processes 4.4 Two-part LGM 4.5 LGM with categorical outcomes 5. Multi-Group Modeling 5.1 Multi-group confirmatory factor analysis (CFA) model 5.2 Multi-group structural equation model (SEM) 5.3 Multi-group latent growth model (LGM) 6. Mixture models 6.1 Latent class analysis (LCA) model 6.2 Latent transition analysis (LTA) model 6.3 Growth mixture model (GMM) 6.4 Factor Mixture Model (FMM) 7. Sample Size for Structural Equation Modeling 7.1 Rule of thumbs for sample size needed for SEM 7.2 Satorra-Saris's method for sample size estimation 7.3 Monte Carlo simulation for sample size estimation 7.4 Estimate sample size for SEM based on model fit statistics/indexes References Index .".
- 2012023035 title "Structural equation modeling with Mplus [electronic resource] : methods and applications / Jichuan Wang, Xiaoqian Wang.".
- 2012023035 type "text".